DATA STRUCTURES

100 PYQs with Complete C Solutions + Theory & Diagrams

1.1 DEFINITIONS

« Data — Raw facts and figures (e.g., numbers, text).

1.1 DEFINITIONS

» Information — Processed data that is meaningful.

1.1 DEFINITIONS

« Data Structure (DS) — A way of organizing, storing, and
managing data efficiently in memory.

1.1 DEFINITIONS

« Abstract Data Type (ADT) — A mathematical model that
defines data and operations, independent of
implementation (e.g., Stack, Queue, List).

1.2 TYPES OF DATA
STRUCTURES

« Primitive DS - Integer, Float, Character, Pointer.

1.2 TYPES OF
STRUC

 Non-Primitive DS

1.2 TYPES OF
STRUC

« Linear — Array, Linked List, Stack, Queue.

1.2 TYPES OF
STRUC

 Non-Linear - Tree, Graph.

1.3 COMPLEXITY
ANALYSIS

* Time Complexity —- How much time an algorithm takes.

1.3 COMPLEXITY
ANALYSIS

« Space Complexity — How much memory it consumes.

ASYMPTOTIC NOTATIONS

« O (Big-O) — Worst case upper bound.

ASYMPTOTIC NOTATIONS

« Q (Omega) — Best case lower bound.

ASYMPTOTIC NOTATIONS

« © (Theta) — Average case / tight bound.

ASYMPTOTIC NOTATIONS

« Example:
* Linear Search — O(n) in worst case.
» Binary Search — Oflog n) in worst case.

1.4 ADVANTAGES OF

« Efficient data storage.

1.4 ADVANTAGES OF

 Faster access and retrieval.

1.4 A

» Reusability of code.

DVANTAGES OF

1.4 ADVANTAGES OF

« Helps in complex algorithm design (Graphs, Trees).

1.5 UNIT T THEORY
QUESTIONS

Q1. Define Data Structure. Explain its types.

* [v] Answer: Data Structure is... (explained above).
Types — Primitive, Non-Primitive (Linear & Non-Linear).

1.5 UNIT T THEORY
QUESTIONS

« Q2. Whatis an ADTe Give examples.
* v] Answer: ADT is... Examples: Stack, Queue, List, Set.

1.5 UNIT T THEORY
QUESTIONS

« Q3. Explain asymptotic notations with examples.
* (V] Answer: O, Q, © with example of searching.

1.5 UNIT T THEORY
QUESTIONS

« Q4. Differentiate between Array and Linked List.

* (V] Answer: Array = static, contiguous memory, random
access. Linked List = dynamic, non-contiguous,

sequential access.

Q1. WRITE A C PROGRAM
FOR LINEAR SEARCH.

* #include <stdio.h>

Q1. WRITE A C PROGRAM
FOR LINEAR SEARCH.

« Int main() {

Q1. WRITE A C PROGRAM
FOR LINEAR SEARCH.

 int arr[50], n, key, i, flag =0;

Q1. WRITE A C PROGRAM
FOR LINEAR SEARCH.

 printf("Enter size of array: ");

Q1. WRITE A C PROGRAM
FOR LINEAR SEARCH.

« scanf("%d", &n);

Q1. WRITE A C PROGRAM
FOR LINEAR SEARCH.

 printf("Enter %d elements: ", n);

Q1. WRITE A C PROGRAM
FOR LINEAR SEARCH.

« for(i=0;i<n;i++)

Q1. WRITE A C PROGRAM
FOR LINEAR SEARCH.

« scanf("%d", &arrli]);

Q1. WRITE A C PROGRAM
FOR LINEAR SEARCH.

» printf("Enter element to search:");

Q1. WRITE A C PROGRAM
FOR LINEAR SEARCH.

« scanf("%d", &key);

Q1. WRITE A C PROGRAM
FOR LINEAR SEARCH.

e for(i=0;1<n;i++){

Q1. WRITE A C PROGRAM
FOR LINEAR SEARCH.

o if(arr[i] == key) {

Q1. WRITE A C PROGRAM
FOR LINEAR SEARCH.

- printf("Element found at position %d\n", i+1);

Q1. WRITE A C PROGRAM
FOR LINEAR SEARCH.

Q1. WRITE A C PROGRAM
FOR LINEAR SEARCH.

Q1. WRITE A C PROGRAM
FOR LINEAR SEARCH.

Q1. WRITE A C PROGRAM
FOR LINEAR SEARCH.

Q1. WRITE A C PROGRAM
FOR LINEAR SEARCH.

Q1. WRITE A C PROGRAM
FOR LINEAR SEARCH.

 printf("Element not found.\n");

Q1. WRITE A C PROGRAM
FOR LINEAR SEARCH.

e return O;

Q1. WRITE A C PROGRAM
FOR LINEAR SEARCH.

Q1. WRITE A C PROGRAM
FOR LINEAR SEARCH.

- & Time Complexity: O(n)

Q2. WRITE A C PROGRAM
FOR BINARY SEARCH.

* #include <stdio.h>

Q2. WRITE A C PROGRAM
FOR BINARY SEARCH.

« Int main() {

Q2. WRITE A C PROGRAM
FOR BINARY SEARCH.

 int arr[50], n, key, i, low, high, mid;

Q2. WRITE A C PROGRAM
FOR BINARY SEARCH.

 printf("Enter size of sorted array: ");

Q2. WRITE A C PROGRAM
FOR BINARY SEARCH.

« scanf("%d", &n);

Q2. WRITE A C PROGRAM
FOR BINARY SEARCH.

 printf("Enter %d sorted elements: ", n);

Q2. WRITE A C PROGRAM
FOR BINARY SEARCH.

« for(i=0;i<n;i++)

Q2. WRITE A C PROGRAM
FOR BINARY SEARCH.

« scanf("%d", &arrli]);

Q2. WRITE A C PROGRAM
FOR BINARY SEARCH.

» printf("Enter element to search:");

Q2. WRITE A C PROGRAM
FOR BINARY SEARCH.

« scanf("%d", &key);

Q2. WRITE A C PROGRAM
FOR BINARY SEARCH.

 low =0; high =n-1;

Q2. WRITE A C PROGRAM
FOR BINARY SEARCH.

« while(low <= high) {

Q2. WRITE A C PROGRAM
FOR BINARY SEARCH.

« mid = (low + high) / 2;

Q2. WRITE A C PROGRAM
FOR BINARY SEARCH.

e if(arr[mid] == key) {

Q2. WRITE A C PROGRAM
FOR BINARY SEARCH.

« printf("Element found at position %d\n", mid+1);

Q2. WRITE A C PROGRAM
FOR BINARY SEARCH.

e return O;

Q2. WRITE A C PROGRAM
FOR BINARY SEARCH.

« } else if(arr[mid] < key)

Q2. WRITE A C PROGRAM
FOR BINARY SEARCH.

e low=mid + 1;

Q2. WRITE A C PROGRAM
FOR BINARY SEARCH.

Q2. WRITE A C PROGRAM
FOR BINARY SEARCH.

 high=mid- 1;

Q2. WRITE A C PROGRAM
FOR BINARY SEARCH.

Q2. WRITE A C PROGRAM
FOR BINARY SEARCH.

 printf("Element not found.\n");

Q2. WRITE A C PROGRAM
FOR BINARY SEARCH.

e return O;

Q2. WRITE A C PROGRAM
FOR BINARY SEARCH.

Q2. WRITE A C PROGRAM
FOR BINARY SEARCH.

. Time Complexity: O(log n)

2.1 ARRAYS

e Definition:

* An array is a collection of elements of the same data
type stored in contiguous memory locations and
accessed using an index.

2.1 ARRAYS

« 1D Array — Linear list of elements.

2.1 ARRAYS

« 2D Array — Matrix (rows & columns).

2.1 ARRAYS

* Multi-Dimensional Array — More than 2D.

2.1 ARRAYS

« Advantages:

2.1 ARRAYS

« Easy access (random access by index).

2.1 ARRAYS

« Memory efficient for fixed size.

2.1 ARRAYS

- Disadvantages:

2.1 ARRAYS

 Fixed size (cannot grow/shrink).

2.1 ARRAYS

* Insertion/Deletion costly (O(n)).

2.1 ARRAYS

« Diagram: 1D Array

2.1 ARRAYS

eIndex— 0 1 2 3 4

2.1 ARRAYS

* Value —- 10 20 30 40 50

2.1 ARRAYS

« Diagram: 2D Array

2.1 ARRAYS

e« Col0 Coll Col2

2.1 ARRAYS

« Row0 10 20 30

2.1 ARRAYS

« Rowl 40 50 60

2.1 ARRAYS

« Row2 70 80 90

2.2 STRINGS

e Definition:

« A string is an array of characters ending with a special
character \0'.

2.2 STRINGS

2.2 STRINGS

« char str[] = "Hello";

2.2 STRINGS

« & Stored as:

2.2 STRINGS

2.2 STRINGS

« Common String Operations:

2.2 STRINGS

* strlen() — Find length

2.2 STRINGS

 strcpy() — Copy

2.2 STRINGS

e strcat() —» Concatenate

2.2 STRINGS

e strcmp() - Compare

2.3 UNIT 2 THEORY
QUESTIONS

« Q1. Define array. What are its advantages and
disadvantagese

« Ans: Array is a collection of elements of same type

stored contiguously. Advantages — fast access,
memory efficient. Disadvantages — fixed size, costly
insertion/deletion.

2.3 UNIT 2 THEORY
QUESTIONS

« Q2. Differentiate between 1D and 2D array.

2.3 UNIT 2 THEORY
QUESTIONS

« 1D — Linear list (index 0..n-1)

2.3 UNIT 2 THEORY
QUESTIONS

« 2D — Maitrix (rows & columns).

2.3 UNIT 2 THEORY
QUESTIONS

« Q3. Explain string and its operations with examples.

« Ans: String = array of characters terminated by \0.
Operations: strlen, strcpy, strcat, stremp.

2.3 UNIT 2 THEORY
QUESTIONS

Q4. What are applications of arrayse

2.3 UNIT 2 THEORY
QUESTIONS

« Matrices, Polynomial representation, Searching &

Sorting, Database tables.

2.4 UNIT 2 PYQS
(PROGRAMMING IN C)

* Q1. Write a C program for Insertion in Array.

2.4 UNIT 2 PYQS
(PROGRAMMING IN C)

* #include <stdio.h>

2.4 UNIT 2 PYQS
(PROGRAMMING IN C)

« Int main() {

2.4 UNIT 2 PYQS
(PROGRAMMING IN C)

 int arr[50], n, i, pos, val;

2.4 UNIT 2 PYQS
(PROGRAMMING IN C)

 printf("Enter size of array: ");

2.4 UNIT 2 PYQS
(PROGRAMMING IN C)

« scanf("%d", &n);

2.4 UNIT 2 PYQS
(PROGRAMMING IN C}

 printf("Enter %d elements: ", n);

2.4 UNIT 2 PYQS
(PROGRAMMING IN C)

« for(i=0;i<n;i++)

2.4 UNIT 2 PYQS
(PROGRAMMING IN C)

« scanf("%d", &arrli]);

2.4 UNIT 2 PYQS
(PROGRAMMING IN C)

 printf("Enter position and value to insert: ");

2.4 UNIT 2 PYQS
(PROGRAMMING IN C)

« scanf("%d %d", &pos, &val);

2.4 UNIT 2 PYQS
(PROGRAMMING IN C)

e for(i = n; 1>=pos; i-)

2.4 UNIT 2 PYQS
(PROGRAMMING IN C)

e arr[i] = arr[i-1];

2.4 UNIT 2 PYQS
(PROGRAMMING IN C)

e arr[pos-1] = val;

2.4 UNIT 2 PYQS
(PROGRAMMING IN C)

2.4 UNIT 2 PYQS
(PROGRAMMING IN C)

« printf("Array after insertion:");

2.4 UNIT 2 PYQS
(PROGRAMMING IN C)

« for(i=0;i<n;i++)

2.4 UNIT 2 PYQS
(PROGRAMMING IN C)

e printf("%d ", arr[i]);

2.4 UNIT 2 PYQS
(PROGRAMMING IN C)

e return O;

2.4 UNIT 2 PYQS
(PROGRAMMING IN C)

2.4 UNIT 2 PYQS
(PROGRAMMING IN C)

« Time Complexity: O(n)

2.4 UNIT 2 PYQS
(PROGRAMMING IN C)

« Q2. Write a C program for Deletion in Array.

2.4 UNIT 2 PYQS
(PROGRAMMING IN C)

* #include <stdio.h>

2.4 UNIT 2 PYQS
(PROGRAMMING IN C)

« Int main() {

2.4 UNIT 2 PYQS
(PROGRAMMING IN C)

 int arr[50], n, i, pos;

2.4 UNIT 2 PYQS
(PROGRAMMING IN C)

 printf("Enter size of array: ");

2.4 UNIT 2 PYQS
(PROGRAMMING IN C)

« scanf("%d", &n);

2.4 UNIT 2 PYQS
(PROGRAMMING IN C}

 printf("Enter %d elements: ", n);

2.4 UNIT 2 PYQS
(PROGRAMMING IN C)

« for(i=0;i<n;i++)

2.4 UNIT 2 PYQS
(PROGRAMMING IN C)

« scanf("%d", &arrli]);

2.4 UNIT 2 PYQS
(PROGRAMMING IN C)

« printf("Enter position to delete: ");

2.4 UNIT 2 PYQS
(PROGRAMMING IN C)

« scanf("%d", &pos);

2.4 UNIT 2 PYQS
(PROGRAMMING IN C)

o for(i=pos-1;i<n-1; i++)

2.4 UNIT 2 PYQS
(PROGRAMMING IN C)

* arr[i] = arr[i+1];

2.4 UNIT 2 PYQS
(PROGRAMMING IN C)

2.4 UNIT 2 PYQS
(PROGRAMMING IN C)

« printf("Array after deletion:");

2.4 UNIT 2 PYQS
(PROGRAMMING IN C)

« for(i=0;i<n;i++)

2.4 UNIT 2 PYQS
(PROGRAMMING IN C)

e printf("%d ", arr[i]);

2.4 UNIT 2 PYQS
(PROGRAMMING IN C)

e return O;

2.4 UNIT 2 PYQS
(PROGRAMMING IN C)

2.4 UNIT 2 PYQS
(PROGRAMMING IN C)

« Time Complexity: O(n)

2.4 UNIT 2 PYQS
(PROGRAMMING IN C)

* Q3. Write a C program to reverse a string.

2.4 UNIT 2 PYQS
(PROGRAMMING IN C)

* #include <stdio.h>

2.4 UNIT 2 PYQS
(PROGRAMMING IN C)

« #include <string.h>

2.4 UNIT 2 PYQS
(PROGRAMMING IN C)

« Int main() {

2.4 UNIT 2 PYQS
(PROGRAMMING IN C)

« char str[50], rev[50];

2.4 UNIT 2 PYQS
(PROGRAMMING IN C)

« inti,j, len;

2.4 UNIT 2 PYQS
(PROGRAMMING IN C)

 printf("Enter a string:");

2.4 UNIT 2 PYQS
(PROGRAMMING IN C)

« gefts(str);

2.4 UNIT 2 PYQS
(PROGRAMMING IN C)

 len = strlen(str);

2.4 UNIT 2 PYQS
(PROGRAMMING IN C)

2.4 UNIT 2 PYQS
(PROGRAMMING IN C)

« for(i=len-1;i>=0; i) {

2.4 UNIT 2 PYQS
(PROGRAMMING IN C)

e rev[j++] = str[i];

2.4 UNIT 2 PYQS
(PROGRAMMING IN C)

2.4 UNIT 2 PYQS
(PROGRAMMING IN C)

« rev[j] ="\0’;

2.4 UNIT 2 PYQS
(PROGRAMMING IN C)

« printf("Reversed string = %s\n", rev);

2.4 UNIT 2 PYQS
(PROGRAMMING IN C)

e return O;

2.4 UNIT 2 PYQS
(PROGRAMMING IN C)

2.4 UNIT 2 PYQS
(PROGRAMMING IN C)

« Time Complexity: O(n)

2.4 UNIT 2 PYQS
(PROGRAMMING IN C)

« Q4. Write a C program to check if a string is
palindrome.

2.4 UNIT 2 PYQS
(PROGRAMMING IN C)

* #include <stdio.h>

2.4 UNIT 2 PYQS
(PROGRAMMING IN C)

« #include <string.h>

2.4 UNIT 2 PYQS
(PROGRAMMING IN C)

« Int main() {

2.4 UNIT 2 PYQS
(PROGRAMMING IN C)

« char str[50];

2.4 UNIT 2 PYQS
(PROGRAMMING IN C)

 inti, len, flag =0;

2.4 UNIT 2 PYQS
(PROGRAMMING IN C)

 printf("Enter a string:");

2.4 UNIT 2 PYQS
(PROGRAMMING IN C)

« gefts(str);

2.4 UNIT 2 PYQS
(PROGRAMMING IN C)

 len = strlen(str);

2.4 UNIT 2 PYQS
(PROGRAMMING IN C)

. for(i=0;i<len/2; i++) {

2.4 UNIT 2 PYQS
(PROGRAMMING IN C)

e if(str[i] I=str[len-i-1]) {

2.4 UNIT 2 PYQS
(PROGRAMMING IN C)

2.4 UNIT 2 PYQS
(PROGRAMMING IN C)

2.4 UNIT 2 PYQS
(PROGRAMMING IN C)

2.4 UNIT 2 PYQS
(PROGRAMMING IN C)

2.4 UNIT 2 PYQS
(PROGRAMMING IN C)

2.4 UNIT 2 PYQS
(PROGRAMMING IN C)

o printf("Palindrome\n");

2.4 UNIT 2 PYQS
(PROGRAMMING IN C)

2.4 UNIT 2 PYQS
(PROGRAMMING IN C)

« printf("Not Palindrome\n");

2.4 UNIT 2 PYQS
(PROGRAMMING IN C)

e return O;

2.4 UNIT 2 PYQS
(PROGRAMMING IN C)

2.4 UNIT 2 PYQS
(PROGRAMMING IN C)

« Time Complexity: O(n)

3.1 INTRODUCTION

e Definition:

* A linked list is a linear data structure where elements

(called nodes) are connected using pointers.

« Each node contains:

3.1 INTRODUCTION

« Data — The value of the element.

3.1 INTRODUCTION

 Pointer/Link — Address of the next node.

3.1 INTRODUCTION

« Unlike arrays (stored in contiguous memory), linked lists
are stored dynamically in memory.

3.2 TYPES OF LINKE

« Singly Linked List (SLL):

3.2 TYPES OF LINKE

« Each node points to the next node.

3.2 TYPES OF LINKE

« Last node points to NULL.

3.2 TYPES OF LINKE

« Diagram: Singly Linked List

3.2 TYPES OF LINKED LISTS

« Head — [Data | Next] — [Data | Next] — [Data | NULL]

3.2 TYPES OF LINKE

« Doubly Linked List (DLL):

3.2 TYPES OF LINKE

 Each node has 2 pointers: prev and next.

3.2 TYPES OF LINKE

* Allows traversal in both directions.

3.2 TYPES OF LINKE

« Diagram: Doubly Linked List

3.2 TYPES OF LINKED LISTS

* NULL « [Prev | Data | Next] « [Prev | Data | Next] «
[Prev | Data | NULL]

3.2 TYPES OF LINKE

 Circular Linked List (CLL):

3.2 TYPES OF LINKE

» Last node points back to the first node.

3.2 TYPES OF LINKE

« Can be singly or doubly circular.

3.2 TYPES OF LINKE

« Diagram: Circular Linked List

3.2 TYPES OF LINKED LISTS

« Head — [Data | Next] — [Data | Next] — [Data | Next] -+

3.2 TYPES OF LINKE

o /A +

3.3 APPLICATIONS OF
LINKED LIST

 Dynamic memory allocation.

3.3 APPLICATIONS OF
LINKED LIST

* Implementation of stacks & queues.

3.3 APPLICATIONS OF
LINKED LIST

« Polynomial & sparse maftrix representation.

3.3 APPLICATIONS OF
LINKED LIST

« Music/video playlist navigation.

3.4 UNIT 3 THEORY
QUESTIONS

« Q1. Whatis alinked liste¢ How is it different from an
arraye

« Ans: A linked list is a dynamic data structure where

nodes are connected by pointers.

3.4 UNIT 3 THEORY
QUESTIONS

« Array — Fixed size, contiguous memory.

3.4 UNIT 3 THEORY
QUESTIONS

 Linked List - Dynamic size, scattered memory, flexible
insertion/deletion.

3.4 UNIT 3 THEORY
QUESTIONS

« Q2. Explain types of linked lists with diagrams.
« Ans: SLL, DLL, CLL — explained above.

3.4 UNIT 3 THEORY
QUESTIONS

« Q3. What are advantages and disadvantages of linked
INK

3.4 UNIT 3 THEORY
QUESTIONS

« Advantages — Dynamic size, efficient
insertion/deletion.

3.4 UNIT 3 THEORY
QUESTIONS

« Disadvantages — No random access, extra memaory for
pointers.

3.4 UNIT 3 THEORY
QUESTIONS

* Q4. Write real-life applications of linked list.

« Ans: Stacks, Queues, Polynomial representation,
Dynamic tables, Playlists.

3.5 UNIT 3 PYQS
(PROGRAMMING IN C)

« Q1. Write a C program to create a singly linked list and
display if.

3.5 UNIT 3 PYQS
(PROGRAMMING IN C)

* #include <stdio.h>

3.5 UNIT 3 PYQS
(PROGRAMMING IN C)

* #include <stdlib.h>

3.5 UNIT 3 PYQS
(PROGRAMMING IN C)

« sfruct Node {

3.5 UNIT 3 PYQS
(PROGRAMMING IN C)

e int dataq;

3.5 UNIT 3 PYQS
(PROGRAMMING IN C)

e struct Node* next;

3.5 UNIT 3 PYQS
(PROGRAMMING IN C)

3.5 UNIT 3 PYQS
(PROGRAMMING IN C)

« Int main() {

3.5 UNIT 3 PYQS
(PROGRAMMING IN C)

 struct Node *head, *newNode, *temp;

3.5 UNIT 3 PYQS
(PROGRAMMING IN C)

e intnN, I, val;

3.5 UNIT 3 PYQS
(PROGRAMMING IN C)

« head = NULL;

3.5 UNIT 3PYQS
(PROGRAMMING IN C)

 printf("Enter number of nodes: ");

3.5 UNIT 3 PYQS
(PROGRAMMING IN C)

« scanf("%d", &n);

3.5 UNIT 3 PYQS
(PROGRAMMING IN C)

e for(i=0;1<n;i++){

3.5 UNIT 3 PYQS
(PROGRAMMING IN C)

« newNode = (struct Node*)malloc (sizeof(struct Node));

3.5 UNIT 3 PYQS
(PROGRAMMING IN C)

 printf("Enter data for node %d: ", i+1);

3.5 UNIT 3 PYQS
(PROGRAMMING IN C)

« scanf("%d", &val);

3.5 UNIT 3 PYQS
(PROGRAMMING IN C)

« newNode->data = val;

3.5 UNIT 3 PYQS
(PROGRAMMING IN C)

« newNode->next = NULL;

3.5 UNIT 3 PYQS
(PROGRAMMING IN C)

o if(head == NULL) {

3.5 UNIT 3 PYQS
(PROGRAMMING IN C)

« head = newNode;

3.5 UNIT 3 PYQS
(PROGRAMMING IN C)

« femp = newNode;

3.5 UNIT 3 PYQS
(PROGRAMMING IN C)

3.5 UNIT 3 PYQS
(PROGRAMMING IN C)

« femp->next = newNode;

3.5 UNIT 3 PYQS
(PROGRAMMING IN C)

« femp = newNode;

3.5 UNIT 3 PYQS
(PROGRAMMING IN C)

3.5 UNIT 3 PYQS
(PROGRAMMING IN C)

3.5 UNIT 3 PYQS
(PROGRAMMING IN C)

* printf("Linked List: ");

3.5 UNIT 3 PYQS
(PROGRAMMING IN C)

« temp = head;

3.5 UNIT 3 PYQS
(PROGRAMMING IN C)

« while(temp != NULL) {

3.5 UNIT 3 PYQS
(PROGRAMMING IN C)

« printf("%d ->", temp->data);

3.5 UNIT 3 PYQS
(PROGRAMMING IN C)

« femp = temp->next;

3.5 UNIT 3 PYQS
(PROGRAMMING IN C)

3.5 UNIT 3 PYQS
(PROGRAMMING IN C)

« printf("NULL\N");

3.5 UNIT 3 PYQS
(PROGRAMMING IN C)

e return O;

3.5 UNIT 3 PYQS
(PROGRAMMING IN C)

3.5 UNIT 3 PYQS
(PROGRAMMING IN C)

* Q2. Write a C program to insert a node at the
beginning of singly linked list.

3.5 UNIT 3 PYQS
(PROGRAMMING IN C)

* #include <stdio.h>

3.5 UNIT 3 PYQS
(PROGRAMMING IN C)

* #include <stdlib.h>

3.5 UNIT 3 PYQS
(PROGRAMMING IN C)

« sfruct Node {

3.5 UNIT 3 PYQS
(PROGRAMMING IN C)

e int dataq;

3.5 UNIT 3 PYQS
(PROGRAMMING IN C)

e struct Node* next;

3.5 UNIT 3 PYQS
(PROGRAMMING IN C)

3.5 UNIT 3 PYQS
(PROGRAMMING IN C)

 void display(struct Node* head) {

3.5 UNIT 3 PYQS
(PROGRAMMING IN C)

 struct Node* temp = head;

3.5 UNIT 3 PYQS
(PROGRAMMING IN C)

« while(temp != NULL) {

3.5 UNIT 3 PYQS
(PROGRAMMING IN C)

« printf("%d ->", temp->data);

3.5 UNIT 3 PYQS
(PROGRAMMING IN C)

« femp = temp->next;

3.5 UNIT 3 PYQS
(PROGRAMMING IN C)

3.5 UNIT 3 PYQS
(PROGRAMMING IN C)

« printf("NULL\N");

3.5 UNIT 3 PYQS
(PROGRAMMING IN C)

3.5 UNIT 3 PYQS
(PROGRAMMING IN C)

« Int main() {

3.5 UNIT 3 PYQS
(PROGRAMMING IN C)

e struct Node *head = NULL, *newNode;

3.5 UNIT 3 PYQS
(PROGRAMMING IN C)

e int val;

3.5 UNIT 3 PYQS
(PROGRAMMING IN C)

« newNode = (struct Node*)malloc (sizeof(struct Node));

3.5 UNIT 3 PYQS
(PROGRAMMING IN C)

« newNode->data = 10;

3.5 UNIT 3 PYQS
(PROGRAMMING IN C)

« newNode->next = NULL;

3.5 UNIT 3 PYQS
(PROGRAMMING IN C)

« head = newNode;

3.5 UNIT 3 PYQS
(PROGRAMMING IN C)

« newNode = (struct Node*)malloc (sizeof(struct Node));

3.5 UNIT 3 PYQS
(PROGRAMMING IN C)

« nhewNode->data = 20;

3.5 UNIT 3 PYQS
(PROGRAMMING IN C)

e newNode->next = head;

3.5 UNIT 3 PYQS
(PROGRAMMING IN C)

« head = newNode;

3.5 UNIT 3 PYQS
(PROGRAMMING IN C)

« printf("Linked List after insertion:");

3.5 UNIT 3 PYQS
(PROGRAMMING IN C)

« display(head);

3.5 UNIT 3 PYQS
(PROGRAMMING IN C)

e return O;

3.5 UNIT 3 PYQS
(PROGRAMMING IN C)

3.5 UNIT 3 PYQS
(PROGRAMMING IN C)

« Q3. Write a C program to delete a node from singly
linked list.

3.5 UNIT 3 PYQS
(PROGRAMMING IN C)

* #include <stdio.h>

3.5 UNIT 3 PYQS
(PROGRAMMING IN C)

* #include <stdlib.h>

3.5 UNIT 3 PYQS
(PROGRAMMING IN C)

« sfruct Node {

3.5 UNIT 3 PYQS
(PROGRAMMING IN C)

e int dataq;

3.5 UNIT 3 PYQS
(PROGRAMMING IN C)

e struct Node* next;

3.5 UNIT 3 PYQS
(PROGRAMMING IN C)

3.5 UNIT 3 PYQS
(PROGRAMMING IN C)

 void display(struct Node* head) {

3.5 UNIT 3 PYQS
(PROGRAMMING IN C)

 struct Node* temp = head;

3.5 UNIT 3 PYQS
(PROGRAMMING IN C)

« while(temp != NULL) {

3.5 UNIT 3 PYQS
(PROGRAMMING IN C)

« printf("%d ->", temp->data);

3.5 UNIT 3 PYQS
(PROGRAMMING IN C)

« femp = temp->next;

3.5 UNIT 3 PYQS
(PROGRAMMING IN C)

3.5 UNIT 3 PYQS
(PROGRAMMING IN C)

« printf("NULL\N");

3.5 UNIT 3 PYQS
(PROGRAMMING IN C)

3.5 UNIT 3 PYQS
(PROGRAMMING IN C)

« Int main() {

3.5 UNIT 3 PYQS
(PROGRAMMING IN C)

« struct Node *head, *temp, *prev;

3.5 UNIT 3 PYQS
(PROGRAMMING IN C)

e struct Node *nl, *n2, *n3;

3.5 UNIT 3 PYQS
(PROGRAMMING IN C)

- // Creating 3 nodes

3.5 UNIT 3 PYQS
(PROGRAMMING IN C)

« N1 = (struct Node*)malloc(sizeof(struct Node));

3.5 UNIT 3 PYQS
(PROGRAMMING IN C)

« N2 = (struct Node*)malloc(sizeof(struct Node));

3.5 UNIT 3 PYQS
(PROGRAMMING IN C)

« N3 = (struct Node*)malloc(sizeof(struct Node));

3.5 UNIT 3 PYQS
(PROGRAMMING IN C)

e n1->data = 10; n2->data = 20; n3->data = 30;

3.5 UNIT 3 PYQS
(PROGRAMMING IN C)

e N1->next = N2; n2->next = Nn3; n3->next = NULL;

3.5 UNIT 3 PYQS
(PROGRAMMING IN C)

3.5 UNIT 3 PYQS
(PROGRAMMING IN C)

 int key = 20;

3.5 UNIT 3 PYQS
(PROGRAMMING IN C)

« temp = head; prev = NULL;

3.5 UNIT 3 PYQS
(PROGRAMMING IN C)

« while(temp = NULL && temp->data |= key) {

3.5 UNIT 3 PYQS
(PROGRAMMING IN C)

e prev =temp;

3.5 UNIT 3 PYQS
(PROGRAMMING IN C)

« femp = temp->next;

3.5 UNIT 3 PYQS
(PROGRAMMING IN C)

3.5 UNIT 3 PYQS
(PROGRAMMING IN C)

o if(temp == NULL) {

3.5 UNIT 3 PYQS
(PROGRAMMING IN C)

 printf("Element not found\n");

3.5 UNIT 3 PYQS
(PROGRAMMING IN C)

3.5 UNIT 3 PYQS
(PROGRAMMING IN C)

* if(prev == NULL)

3.5 UNIT 3 PYQS
(PROGRAMMING IN C)

 head = temp->next;

3.5 UNIT 3 PYQS
(PROGRAMMING IN C)

3.5 UNIT 3 PYQS
(PROGRAMMING IN C)

* prev->next = temp->next;

3.5 UNIT 3 PYQS
(PROGRAMMING IN C)

 free(temp);

3.5 UNIT 3 PYQS
(PROGRAMMING IN C)

3.5 UNIT 3 PYQS
(PROGRAMMING IN C)

« printf("Linked List after deletion: ");

3.5 UNIT 3 PYQS
(PROGRAMMING IN C)

« display(head);

3.5 UNIT 3 PYQS
(PROGRAMMING IN C)

e return O;

3.5 UNIT 3 PYQS
(PROGRAMMING IN C)

3.5 UNIT 3 PYQS
(PROGRAMMING IN C)

* Q4. Write a C program to implement a doubly linked
list.

3.5 UNIT 3 PYQS
(PROGRAMMING IN C)

* #include <stdio.h>

3.5 UNIT 3 PYQS
(PROGRAMMING IN C)

* #include <stdlib.h>

3.5 UNIT 3 PYQS
(PROGRAMMING IN C)

« sfruct Node {

3.5 UNIT 3 PYQS
(PROGRAMMING IN C)

e int dataq;

3.5 UNIT 3 PYQS
(PROGRAMMING IN C)

« struct Node* prev;

3.5 UNIT 3 PYQS
(PROGRAMMING IN C)

e struct Node* next;

3.5 UNIT 3 PYQS
(PROGRAMMING IN C)

3.5 UNIT 3 PYQS
(PROGRAMMING IN C)

 void display(struct Node* head) {

3.5 UNIT 3 PYQS
(PROGRAMMING IN C)

 struct Node* temp = head;

3.5 UNIT 3 PYQS
(PROGRAMMING IN C)

« while(temp != NULL) {

3.5 UNIT 3 PYQS
(PROGRAMMING IN C)

e printf("%d <->", temp->data);

3.5 UNIT 3 PYQS
(PROGRAMMING IN C)

« femp = temp->next;

3.5 UNIT 3 PYQS
(PROGRAMMING IN C)

3.5 UNIT 3 PYQS
(PROGRAMMING IN C)

« printf("NULL\N");

3.5 UNIT 3 PYQS
(PROGRAMMING IN C)

3.5 UNIT 3 PYQS
(PROGRAMMING IN C)

« Int main() {

3.5 UNIT 3 PYQS
(PROGRAMMING IN C)

e struct Node *head, *nl, *n2, *n3;

3.5 UNIT 3 PYQS
(PROGRAMMING IN C)

« N1 = (struct Node*)malloc(sizeof(struct Node));

3.5 UNIT 3 PYQS
(PROGRAMMING IN C)

« N2 = (struct Node*)malloc(sizeof(struct Node));

3.5 UNIT 3 PYQS
(PROGRAMMING IN C)

« N3 = (struct Node*)malloc(sizeof(struct Node));

3.5 UNIT 3 PYQS
(PROGRAMMING IN C)

e n1->data = 10; n2->data = 20; n3->data = 30;

3.5 UNIT 3 PYQS
(PROGRAMMING IN C)

* Nn1->prev = NULL; n1->next = n2;

3.5 UNIT 3 PYQS
(PROGRAMMING IN C)

* N2->prev = nl; n2->next = n3;

3.5 UNIT 3 PYQS
(PROGRAMMING IN C)

* N3->prev = n2; n3->next = NULL;

3.5 UNIT 3 PYQS
(PROGRAMMING IN C)

3.5 UNIT 3 PYQS
(PROGRAMMING IN C)

 printf("Doubly Linked List:");

3.5 UNIT 3 PYQS
(PROGRAMMING IN C)

« display(head);

3.5 UNIT 3 PYQS
(PROGRAMMING IN C)

e return O;

3.5 UNIT 3 PYQS
(PROGRAMMING IN C)

4.1 INTRODUCTION

* In linear data structures, Stack and Queue are two
fundamental abstract data types (ADTs).

4.2 STACK

e Definition:

A stackis alinear data structure that follows the LIFO
(Last In First Out) principle.

4.2 STACK

e Insertion — Push

4.2 STACK

» Deletion — Pop

4.2 STACK

« Top element — Peek

4.2 STACK

« & Diagram of Stack (LIFO):

4.2 STACK

4.2 STACK

4.2 STACK

4.2 STACK

4.2 STACK

4.2 STACK

4.2 STACK

4.2 STACK

- | 10 | < Bottom

4.2 STACK

OPERATIONS ON STACK

« Push(x): Insert an element.

OPERATIONS ON STACK

« Pop(): Remove the top element.

OPERATIONS ON STACK

« Peek(): Get the top element without removing.

OPERATIONS ON STACK

« iISEmpty(): Check if stack is empty.

OPERATIONS ON STACK

« iIsFull(): Check if stack is full (in case of array
iImplementation).

APPLICATIONS OF STACK

« Expression evaluation (Postfix, Prefix).

APPLICATIONS OF STACK

« Function calls (recursion).

APPLICATIONS OF STACK

« Undo/Redo operations in editors.

APPLICATIONS OF STACK

« Backtracking algorithmes.

4.3 QUEUE

e Definition:

* A queue is d linear data structure that follows the FIFO
(First In First Out) principle.

4.3 QUEUE

* Insertion — Enqueue (at rear)

4.3 QUEUE

« Deletion —» Dequeue (from front)

4.3 QUEUE

.« s Diagram of Queue (FIFO):

4.3 QUEUE

* Front — [10][20][30][40] « Rear

TYPES OF QUEUE

« Simple Queue — Normal FIFO.

TYPES OF QUEUE

e Circular Queue — Rear connects back to front when
space is available.

TYPES OF QUEUE

« Double Ended Queue (Deque) — Insert/Delete from
both ends.

TYPES OF QUEUE

» Priority Queue — Elements are dequeued based on
priority.

APPLICATIONS OF QUEUE

« Scheduling (CPU scheduling, job scheduling).

APPLICATIONS OF QUEUE

* Printer fask management.

APPLICATIONS OF QUEUE

« Networking (data packets).

APPLICATIONS OF QUEUE

« Call center systems.

4.4 UNIT 4 THEORY
QUESTIONS

* Q1. Define stack. Explain its applications.

« Ans: Stack is LIFO-based. Applications: recursion,
backtracking, undo-redo, expression evaluation.

4.4 UNIT 4 THEORY
QUESTIONS

« Q2. Differentiate between stack and queue.

4.4 UNIT 4 THEORY
QUESTIONS

« Stack — LIFO, insertion/deletion at one end.

4.4 UNIT 4 THEORY
QUESTIONS

« Queue — FIFO, insertion at rear & deletion at front.

4.4 UNIT 4 THEORY
QUESTIONS

« Q3. What is a circular gueue?¢ Why is it better than a
simple queue?

* ANns: In circular queue, memory is reused by connecting

rear to front. Prevents memory wastage.

4.4 UNIT 4 THEORY
QUESTIONS

* Q4. Explain priority queue with an example.

« ANns: In priority queue, higher priority elements are
dequeued first (e.g., hospital emergency ward).

4.5 UNIT 4 PYQS
(PROGRAMMING IN C)

* QI. Write a C program to implement stack using array.

4.5 UNIT 4 PYQS
(PROGRAMMING IN C)

* #include <stdio.h>

4.5 UNIT 4 PYQS
(PROGRAMMING IN C)

e #define MAX 5

4.5 UNIT 4 PYQS
(PROGRAMMING IN C)

 int stack[MAX], top = -1;

4.5 UNIT 4 PYQS
(PROGRAMMING IN C)

 void push(int val) {

4.5 UNIT 4 PYQS
(PROGRAMMING IN C)

e if(top == MAX - 1)

4.5 UNIT 4 PYQS
(PROGRAMMING IN C)

 printf("Stack Overflow\n");

4.5 UNIT 4 PYQS
(PROGRAMMING IN C)

4.5 UNIT 4 PYQS
(PROGRAMMING IN C)

4.5 UNIT 4 PYQS
(PROGRAMMING IN C)

« stack[top] = val;

4.5 UNIT 4 PYQS
(PROGRAMMING IN C}

 printf("%d pushed to stack\n", val);

4.5 UNIT 4 PYQS
(PROGRAMMING IN C)

4.5 UNIT 4 PYQS
(PROGRAMMING IN C)

4.5 UNIT 4 PYQS
(PROGRAMMING IN C)

» void pop() {

4.5 UNIT 4 PYQS
(PROGRAMMING IN C)

4.5 UNIT 4 PYQS
(PROGRAMMING IN C)

 printf("Stack Underflow\n");

4.5 UNIT 4 PYQS
(PROGRAMMING IN C)

4.5 UNIT 4 PYQS
(PROGRAMMING IN C)

 printf("%d popped from stack\n", stack[top--]);

4.5 UNIT 4 PYQS
(PROGRAMMING IN C)

4.5 UNIT 4 PYQS
(PROGRAMMING IN C)

 void display() {

4.5 UNIT 4 PYQS
(PROGRAMMING IN C)

4.5 UNIT 4 PYQS
(PROGRAMMING IN C)

o printf("Stack is empty\n");

4.5 UNIT 4 PYQS
(PROGRAMMING IN C)

4.5 UNIT 4 PYQS
(PROGRAMMING IN C]

 printf("Stack elements:");

4.5 UNIT 4 PYQS
(PROGRAMMING IN C)

e for(inti=top;i>=0;i-)

4.5 UNIT 4 PYQS
(PROGRAMMING IN C)

« printf("%d ", stack]i]);

4.5 UNIT 4 PYQS
(PROGRAMMING IN C)

 printf(™\n”);

4.5 UNIT 4 PYQS
(PROGRAMMING IN C)

4.5 UNIT 4 PYQS
(PROGRAMMING IN C)

4.5 UNIT 4 PYQS
(PROGRAMMING IN C)

« Int main() {

4.5 UNIT 4 PYQS
(PROGRAMMING IN C)

4.5 UNIT 4 PYQS
(PROGRAMMING IN C)

4.5 UNIT 4 PYQS
(PROGRAMMING IN C)

4.5 UNIT 4 PYQS
(PROGRAMMING IN C)

4.5 UNIT 4 PYQS
(PROGRAMMING IN C)

4.5 UNIT 4 PYQS
(PROGRAMMING IN C)

4.5 UNIT 4 PYQS
(PROGRAMMING IN C)

e return O;

4.5 UNIT 4 PYQS
(PROGRAMMING IN C)

4.5 UNIT 4 PYQS
(PROGRAMMING IN C)

* Q2. Write a C program to implement queue using
array.

4.5 UNIT 4 PYQS
(PROGRAMMING IN C)

* #include <stdio.h>

4.5 UNIT 4 PYQS
(PROGRAMMING IN C)

e #define MAX 5

4.5 UNIT 4 PYQS
(PROGRAMMING IN C)

e int queue[MAX], front =-1, rear =-1;

4.5 UNIT 4 PYQS
(PROGRAMMING IN C)

« void enqueue(int val) {

4.5 UNIT 4 PYQS
(PROGRAMMING IN C)

e if(rear == MAX - 1)

4.5 UNIT 4 PYQS
(PROGRAMMING IN C)

 printf("Queue Overflow\n");

4.5 UNIT 4 PYQS
(PROGRAMMING IN C)

4.5 UNIT 4 PYQS
(PROGRAMMING IN C)

e if(front ==-1) front = 0;

4.5 UNIT 4 PYQS
(PROGRAMMING IN C)

« queue[++rear] = val;

4.5 UNIT 4 PYQS
(PROGRAMMING IN C)

« printf("%d enqueued\n", val);

4.5 UNIT 4 PYQS
(PROGRAMMING IN C)

4.5 UNIT 4 PYQS
(PROGRAMMING IN C)

4.5 UNIT 4 PYQS
(PROGRAMMING IN C)

« void dequeue() {

4.5 UNIT 4 PYQS
(PROGRAMMING IN C)

e if(front ==-1 | | front >rear)

4.5 UNIT 4 PYQS
(PROGRAMMING IN C)

 printf("Queue Underflow\n");

4.5 UNIT 4 PYQS
(PROGRAMMING IN C)

4.5 UNIT 4 PYQS
(PROGRAMMING IN C)

« printf("%d dequeued\n", queue|front++]);

4.5 UNIT 4 PYQS
(PROGRAMMING IN C)

4.5 UNIT 4 PYQS
(PROGRAMMING IN C)

 void display() {

4.5 UNIT 4 PYQS
(PROGRAMMING IN C)

e if(front ==-1 | | front >rear)

4.5 UNIT 4 PYQS
(PROGRAMMING IN C)

. printf("Queue is empty\n");

4.5 UNIT 4 PYQS
(PROGRAMMING IN C)

4.5 UNIT 4 PYQS
(PROGRAMMING IN C)

« printf("Queue elements:");

4.5 UNIT 4 PYQS
(PROGRAMMING IN C)

. for(int i = front; i <= rear; i++)

4.5 UNIT 4 PYQS
(PROGRAMMING IN C)

« printf("%d ", queueli]);

4.5 UNIT 4 PYQS
(PROGRAMMING IN C)

 printf(™\n”);

4.5 UNIT 4 PYQS
(PROGRAMMING IN C)

4.5 UNIT 4 PYQS
(PROGRAMMING IN C)

4.5 UNIT 4 PYQS
(PROGRAMMING IN C)

« Int main() {

4.5 UNIT 4 PYQS
(PROGRAMMING IN C)

« enqueue(10);

4.5 UNIT 4 PYQS
(PROGRAMMING IN C)

« enqueue(20);

4.5 UNIT 4 PYQS
(PROGRAMMING IN C)

« enqueue(30);

4.5 UNIT 4 PYQS
(PROGRAMMING IN C)

4.5 UNIT 4 PYQS
(PROGRAMMING IN C)

« dequeue();

4.5 UNIT 4 PYQS
(PROGRAMMING IN C)

4.5 UNIT 4 PYQS
(PROGRAMMING IN C)

e return O;

4.5 UNIT 4 PYQS
(PROGRAMMING IN C)

4.5 UNIT 4 PYQS
(PROGRAMMING IN C)

« Q3. Write a C program to implement circular queue.

4.5 UNIT 4 PYQS
(PROGRAMMING IN C)

* #include <stdio.h>

4.5 UNIT 4 PYQS
(PROGRAMMING IN C)

e #define MAX 5

4.5 UNIT 4 PYQS
(PROGRAMMING IN C)

* int cq[MAX], front =-1, rear =-1;

4.5 UNIT 4 PYQS
(PROGRAMMING IN C)

« void enqueue(int val) {

4.5 UNIT 4 PYQS
(PROGRAMMING IN C)

e if((front == 0 && rear==MAX-1) | | (rear + 1) % MAX
== front)

4.5 UNIT 4 PYQS
(PROGRAMMING IN C)

« printf("Circular Queue Overflow\n");

4.5 UNIT 4 PYQS
(PROGRAMMING IN C)

4.5 UNIT 4 PYQS
(PROGRAMMING IN C)

e if(front ==-1) front = 0;

4.5 UNIT 4 PYQS
(PROGRAMMING IN C)

e rear = (rear + 1) % MAX;

4.5 UNIT 4 PYQS
(PROGRAMMING IN C)

« cqlrear] = val;

4.5 UNIT 4 PYQS
(PROGRAMMING IN C)

« printf("%d enqueued\n", val);

4.5 UNIT 4 PYQS
(PROGRAMMING IN C)

4.5 UNIT 4 PYQS
(PROGRAMMING IN C)

4.5 UNIT 4 PYQS
(PROGRAMMING IN C)

« void dequeue() {

4.5 UNIT 4 PYQS
(PROGRAMMING IN C)

e if(front == -1)

4.5 UNIT 4 PYQS
(PROGRAMMING IN C)

« printf("Circular Queue Underflow\n");

4.5 UNIT 4 PYQS
(PROGRAMMING IN C)

4.5 UNIT 4 PYQS
(PROGRAMMING IN C)

 printf("%d dequeued\n", cqgfront]);

4.5 UNIT 4 PYQS
(PROGRAMMING IN C)

e if(front == rear)

4.5 UNIT 4 PYQS
(PROGRAMMING IN C)

e front =rear =-1;

4.5 UNIT 4 PYQS
(PROGRAMMING IN C)

4.5 UNIT 4 PYQS
(PROGRAMMING IN C)

« front = (front + 1) % MAX;

4.5 UNIT 4 PYQS
(PROGRAMMING IN C)

4.5 UNIT 4 PYQS
(PROGRAMMING IN C)

4.5 UNIT 4 PYQS
(PROGRAMMING IN C)

 void display() {

4.5 UNIT 4 PYQS
(PROGRAMMING IN C)

e if(front == -1)

4.5 UNIT 4 PYQS
(PROGRAMMING IN C)

« printf("Circular Queue is empty\n");

4.5 UNIT 4 PYQS
(PROGRAMMING IN C)

4.5 UNIT 4 PYQS
(PROGRAMMING IN C}

« printf("Circular Queue elements:");

4.5 UNIT 4 PYQS
(PROGRAMMING IN C)

e inti=front;

4.5 UNIT 4 PYQS
(PROGRAMMING IN C)

« while(1) {

4.5 UNIT 4 PYQS
(PROGRAMMING IN C)

« printf("%d ", cqli]);

4.5 UNIT 4 PYQS
(PROGRAMMING IN C)

o if(i ==rear) break;

4.5 UNIT 4 PYQS
(PROGRAMMING IN C)

ci=(i+1) % MAX;

4.5 UNIT 4 PYQS
(PROGRAMMING IN C)

4.5 UNIT 4 PYQS
(PROGRAMMING IN C)

 printf(™\n”);

4.5 UNIT 4 PYQS
(PROGRAMMING IN C)

4.5 UNIT 4 PYQS
(PROGRAMMING IN C)

4.5 UNIT 4 PYQS
(PROGRAMMING IN C)

« Int main() {

4.5 UNIT 4 PYQS
(PROGRAMMING IN C)

« enqueue(10);

4.5 UNIT 4 PYQS
(PROGRAMMING IN C)

« enqueue(20);

4.5 UNIT 4 PYQS
(PROGRAMMING IN C)

« enqueue(30);

4.5 UNIT 4 PYQS
(PROGRAMMING IN C)

4.5 UNIT 4 PYQS
(PROGRAMMING IN C)

« dequeue();

4.5 UNIT 4 PYQS
(PROGRAMMING IN C)

4.5 UNIT 4 PYQS
(PROGRAMMING IN C)

e return O;

4.5 UNIT 4 PYQS
(PROGRAMMING IN C)

4.5 UNIT 4 PYQS
(PROGRAMMING IN C)

« Q4. Write a C program to implement stack using linked
list.

4.5 UNIT 4 PYQS
(PROGRAMMING IN C)

* #include <stdio.h>

4.5 UNIT 4 PYQS
(PROGRAMMING IN C)

* #include <stdlib.h>

4.5 UNIT 4 PYQS
(PROGRAMMING IN C)

« sfruct Node {

4.5 UNIT 4 PYQS
(PROGRAMMING IN C)

e int dataq;

4.5 UNIT 4 PYQS
(PROGRAMMING IN C)

e struct Node* next;

4.5 UNIT 4 PYQS
(PROGRAMMING IN C)

4.5 UNIT 4 PYQS
(PROGRAMMING IN C)

 struct Node* top = NULL;

4.5 UNIT 4 PYQS
(PROGRAMMING IN C)

 void push(int val) {

4.5 UNIT 4 PYQS
(PROGRAMMING IN C)

 stfruct Node* newNode = (struct
Node*)malloc(sizeof(struct Node));

4.5 UNIT 4 PYQS
(PROGRAMMING IN C)

« newNode->data = val;

4.5 UNIT 4 PYQS
(PROGRAMMING IN C)

 newNode->next = top;

4.5 UNIT 4 PYQS
(PROGRAMMING IN C)

* fop = newNode;

4.5 UNIT 4 PYQS
(PROGRAMMING IN C}

. printf("%d pushed\n", val);

4.5 UNIT 4 PYQS
(PROGRAMMING IN C)

4.5 UNIT 4 PYQS
(PROGRAMMING IN C)

» void pop() {

4.5 UNIT 4 PYQS
(PROGRAMMING IN C)

e if(top == NULL)

4.5 UNIT 4 PYQS
(PROGRAMMING IN C)

 printf("Stack Underflow\n");

4.5 UNIT 4 PYQS
(PROGRAMMING IN C)

4.5 UNIT 4 PYQS
(PROGRAMMING IN C)

» struct Node* temp = top;

4.5 UNIT 4 PYQS
(PROGRAMMING IN C)

 printf("%d popped\n", temp->data);

4.5 UNIT 4 PYQS
(PROGRAMMING IN C)

» fOop = top->next;

4.5 UNIT 4 PYQS
(PROGRAMMING IN C)

 free(temp);

4.5 UNIT 4 PYQS
(PROGRAMMING IN C)

4.5 UNIT 4 PYQS
(PROGRAMMING IN C)

4.5 UNIT 4 PYQS
(PROGRAMMING IN C)

 void display() {

4.5 UNIT 4 PYQS
(PROGRAMMING IN C)

» struct Node* temp = top;

4.5 UNIT 4 PYQS
(PROGRAMMING IN C)

e if(temp == NULL)

4.5 UNIT 4 PYQS
(PROGRAMMING IN C)

o printf("Stack is empty\n");

4.5 UNIT 4 PYQS
(PROGRAMMING IN C)

4.5 UNIT 4 PYQS
(PROGRAMMING IN C]

 printf("Stack elements:");

4.5 UNIT 4 PYQS
(PROGRAMMING IN C)

« while(temp != NULL) {

4.5 UNIT 4 PYQS
(PROGRAMMING IN C)

« printf("%d ", temp->data);

4.5 UNIT 4 PYQS
(PROGRAMMING IN C)

« femp = temp->next;

4.5 UNIT 4 PYQS
(PROGRAMMING IN C)

4.5 UNIT 4 PYQS
(PROGRAMMING IN C)

 printf(™\n”);

4.5 UNIT 4 PYQS
(PROGRAMMING IN C)

4.5 UNIT 4 PYQS
(PROGRAMMING IN C)

4.5 UNIT 4 PYQS
(PROGRAMMING IN C)

« Int main() {

4.5 UNIT 4 PYQS
(PROGRAMMING IN C)

4.5 UNIT 4 PYQS
(PROGRAMMING IN C)

4.5 UNIT 4 PYQS
(PROGRAMMING IN C)

4.5 UNIT 4 PYQS
(PROGRAMMING IN C)

4.5 UNIT 4 PYQS
(PROGRAMMING IN C)

4.5 UNIT 4 PYQS
(PROGRAMMING IN C)

4.5 UNIT 4 PYQS
(PROGRAMMING IN C)

e return O;

4.5 UNIT 4 PYQS
(PROGRAMMING IN C)

5.1 INTRODUCTION

« After linear data structures (array, stack, queue, linked
list), we study non-linear data structures.

5.1 INTRODUCTION

 Tree — Hierarchical structure.

5.1 INTRODUCTION

« Graph — Network structure.

5.2 TREE

e Definition:

« A free is a non-linear data structure that represents
hierarchical relationships between elements (nodes).

5.2 TREE

 Root — Top-most hode.

5.2 TREE

« Edge — Link between nodes.

5.2 TREE

« Parent — Node having children.

5.2 TREE

« Child — Node derived from parent.

5.2 TREE

 Leaf - Node with no children.

5.2 TREE

« X Diagram of Binary Tree:

5.2 TREE

5.2 TREE

5.2 TREE

* (20) (30)

5.2 TREE

5.2 TREE

* (40) (50) (60)

TYPES OF TREES

* Binary Tree — Each node has max 2 children.

TYPES OF TREES

« Full Binary Tree — Every node has 0 or 2 children.

TYPES OF TREES

« Complete Binary Tree — All levels full, last level filled left
to right.

TYPES OF TREES

« Binary Search Tree (BST) — Left child <rooft <right child.

TYPES OF TREES

« AVL Tree — Self-balancing BST.

TREE TRAVERSALS

* Inorder (LNR): Left - Node — Right

TREE TRAVERSALS

* Preorder (NLR): Node — Left — Right

TREE TRAVERSALS

« Postorder (LRN): Left — Right — Node

TREE TRAVERSALS

« 2 Example (Binary Tree Traversal):

TREE TRAVERSALS

TREE TRAVERSALS

TREE TRAVERSALS

TREE TRAVERSALS

TREE TRAVERSALS

TREE TRAVERSALS

e Inorder;: 42513

TREE TRAVERSALS

e Preorder: 12453

TREE TRAVERSALS

« Postorder: 4523 1

APPLICATIONS OF TREES

« Database indexing (B-free, B+ tree).

APPLICATIONS OF TREES

 File system hierarchy.

APPLICATIONS OF TREES

« Expression parsing.

APPLICATIONS OF TREES

« Searching and sorting.

5.3 GRAPH

e Definition:

« A graph is a set of vertices (nodes) and edges (links)
connecting them.

5.3 GRAPH

« Diagram of Graph:

5.3 GRAPH

5.3 GRAPH

5.3 GRAPH

5.3 GRAPH

TYPES OF GRAPHS

« Undirected Graph — Edges have no direction.

TYPES OF GRAPHS

« Directed Graph (Digraph) — Edges have direction.

TYPES OF GRAPHS

 Weighted Graph — Each edge has a weight (cost).

TYPES OF GRAPHS

 Connected Graph — Path exists between all nodes.

TYPES OF GRAPHS

» Cyclic Graph — Graph containing cycles.

GRAPH
REPRESENTATIONS

« Adjacency Matrix: 2D array (n x n).

GRAPH
REPRESENTATIONS

« Adjacency List: Linked list of neighbors.

GRAPH TRAVERSALS

« Depth First Search (DFS): Go deep along a branch
before backtracking.

GRAPH TRAVERSALS

« Breadth First Search (BFS): Visit level by level using a
queue.

APPLICATIONS OF
GRAPHS

« Social networks (friendship connections).

APPLICATIONS OF
GRAPHS

« Google Maps (shortest path algorithms).

APPLICATIONS OF
GRAPHS

« Network routing.

APPLICATIONS OF
GRAPHS

« Scheduling and dependency resolution.

5.4 UNIT 5 THEORY
QUESTIONS

Q1. Define binary tree. Explain its applications.

* Ans: Binary tfree — hierarchical DS with max 2 children.
Applications: searching, expression frees, memory

management.

5.4 UNIT 5 THEORY
QUESTIONS

« Q2. Differentiate between tree and graph.

5.4 UNIT 5 THEORY
QUESTIONS

* Tree — Hierarchical, no cycles.

5.4 UNIT 5 THEORY
QUESTIONS

« Graph — Network, may contain cycles.

5.4 UNIT 5 THEORY
QUESTIONS

« Q3. Explain DFS and BFS.
 DFS — stack/recursion, deep search.
 BFS — queue, level order traversal.

5.4 UNIT 5 THEORY
QUESTIONS

* Q4. Write properties of Binary Search Tree.

5.4 UNIT 5 THEORY
QUESTIONS

« Left < Root < Right.

5.4 UNIT 5 THEORY
QUESTIONS

 Inorder traversal gives sorted order.

5.5 UNIT 5 PYQS
(PROGRAMMING IN C)

« QI1. Write a C program for Binary Tree fraversals
(Inorder, Preorder, Postorder).

5.5 UNIT 5 PYQS
(PROGRAMMING IN C)

* #include <stdio.h>

5.5 UNIT 5 PYQS
(PROGRAMMING IN C)

* #include <stdlib.h>

5.5 UNIT 5 PYQS
(PROGRAMMING IN C)

« sfruct Node {

5.5 UNIT 5 PYQS
(PROGRAMMING IN C)

e int dataq;

5.5 UNIT 5 PYQS
(PROGRAMMING IN C)

e sfruct Node* |eft;

5.5 UNIT 5 PYQS
(PROGRAMMING IN C)

 stfruct Node* right;

5.5 UNIT 5 PYQS
(PROGRAMMING IN C)

5.5 UNIT 5 PYQS
(PROGRAMMING IN C)

« stfruct Node* createNode(int datq) {

5.5 UNIT 5 PYQS
(PROGRAMMING IN C)

 stfruct Node* newNode = (struct
Node*)malloc(sizeof(struct Node));

5.5 UNIT 5 PYQS
(PROGRAMMING IN C)

« newNode->data = datag;

5.5 UNIT 5 PYQS
(PROGRAMMING IN C)

« newNode->left = newNode->right = NULL;

5.5 UNIT 5 PYQS
(PROGRAMMING IN C)

* return newNode;

5.5 UNIT 5 PYQS
(PROGRAMMING IN C)

5.5 UNIT 5 PYQS
(PROGRAMMING IN C)

 void inorder(struct Node* root) {

5.5 UNIT 5 PYQS
(PROGRAMMING IN C)

e if(root |= NULL) {

5.5 UNIT 5 PYQS
(PROGRAMMING IN C)

 inorder(root->left);

5.5 UNIT 5 PYQS
(PROGRAMMING IN C)

« printf("%d ", root->data);

5.5 UNIT 5 PYQS
(PROGRAMMING IN C)

* inorder(root->right);

5.5 UNIT 5 PYQS
(PROGRAMMING IN C)

5.5 UNIT 5 PYQS
(PROGRAMMING IN C)

5.5 UNIT 5 PYQS
(PROGRAMMING IN C)

 void preorder(struct Node* root) {

5.5 UNIT 5 PYQS
(PROGRAMMING IN C)

e if(root |= NULL) {

5.5 UNIT 5 PYQS
(PROGRAMMING IN C)

« printf("%d ", root->data);

5.5 UNIT 5 PYQS
(PROGRAMMING IN C)

« preorder(root->left);

5.5 UNIT 5 PYQS
(PROGRAMMING IN C)

« preorder(root->right);

5.5 UNIT 5 PYQS
(PROGRAMMING IN C)

5.5 UNIT 5 PYQS
(PROGRAMMING IN C)

5.5 UNIT 5 PYQS
(PROGRAMMING IN C)

 void postorder(struct Node* root) {

5.5 UNIT 5 PYQS
(PROGRAMMING IN C)

e if(root |= NULL) {

5.5 UNIT 5 PYQS
(PROGRAMMING IN C)

« postorder(root->left);

5.5 UNIT 5 PYQS
(PROGRAMMING IN C)

« postorder(root->right);

5.5 UNIT 5 PYQS
(PROGRAMMING IN C)

« printf("%d ", root->data);

5.5 UNIT 5 PYQS
(PROGRAMMING IN C)

5.5 UNIT 5 PYQS
(PROGRAMMING IN C)

5.5 UNIT 5 PYQS
(PROGRAMMING IN C)

« Int main() {

5.5 UNIT 5 PYQS
(PROGRAMMING IN C)

« struct Node* root = createNode(1);

5.5 UNIT 5 PYQS
(PROGRAMMING IN C)

« root->left = createNode(2);

5.5 UNIT 5 PYQS
(PROGRAMMING IN C)

« root->right = createNode(3);

5.5 UNIT 5 PYQS
(PROGRAMMING IN C}

« root->left->left = createNode(4);

5.5 UNIT 5 PYQS
(PROGRAMMING IN C)

« root->left->right = createNode(5);

5.5 UNIT 5 PYQS
(PROGRAMMING IN C)

« printf("Inorder: ");

5.5 UNIT 5 PYQS
(PROGRAMMING IN C)

* inorder(root);

5.5 UNIT 5 PYQS
(PROGRAMMING IN C)

 printf("\nPreorder: ");

5.5 UNIT 5 PYQS
(PROGRAMMING IN C)

« preorder(root);

5.5 UNIT 5 PYQS
(PROGRAMMING IN C)

* printf("\nPostorder: ");

5.5 UNIT 5 PYQS
(PROGRAMMING IN C)

« postorder(root);

5.5 UNIT 5 PYQS
(PROGRAMMING IN C)

e return O;

5.5 UNIT 5 PYQS
(PROGRAMMING IN C)

5.5 UNIT 5 PYQS
(PROGRAMMING IN C)

* Q2. Write a C program to implement Binary Search Tree
(BST).

5.5 UNIT 5 PYQS
(PROGRAMMING IN C)

* #include <stdio.h>

5.5 UNIT 5 PYQS
(PROGRAMMING IN C)

* #include <stdlib.h>

5.5 UNIT 5 PYQS
(PROGRAMMING IN C)

« sfruct Node {

5.5 UNIT 5 PYQS
(PROGRAMMING IN C)

e int dataq;

5.5 UNIT 5 PYQS
(PROGRAMMING IN C)

e sfruct Node* |eft;

5.5 UNIT 5 PYQS
(PROGRAMMING IN C)

 stfruct Node* right;

5.5 UNIT 5 PYQS
(PROGRAMMING IN C)

5.5 UNIT 5 PYQS
(PROGRAMMING IN C)

« stfruct Node* createNode(int datq) {

5.5 UNIT 5 PYQS
(PROGRAMMING IN C)

 stfruct Node* newNode = (struct
Node*)malloc(sizeof(struct Node));

5.5 UNIT 5 PYQS
(PROGRAMMING IN C)

« newNode->data = datag;

5.5 UNIT 5 PYQS
(PROGRAMMING IN C)

« newNode->left = newNode->right = NULL;

5.5 UNIT 5 PYQS
(PROGRAMMING IN C)

* return newNode;

5.5 UNIT 5 PYQS
(PROGRAMMING IN C)

5.5 UNIT 5 PYQS
(PROGRAMMING IN C)

« stfruct Node* insert(struct Node* root, int data) {

5.5 UNIT 5 PYQS
(PROGRAMMING IN C)

« if(root == NULL) return createNode(data);

5.5 UNIT 5 PYQS
(PROGRAMMING IN C)

e if(data < root->datq)

5.5 UNIT 5 PYQS
(PROGRAMMING IN C)

« root->left = insert(root->left, data);

5.5 UNIT 5 PYQS
(PROGRAMMING IN C)

« else if(data > root->datq)

5.5 UNIT 5 PYQS
(PROGRAMMING IN C)

« root->right = insert(root->right, data);

5.5 UNIT 5 PYQS
(PROGRAMMING IN C)

e refurn roof;

5.5 UNIT 5 PYQS
(PROGRAMMING IN C)

5.5 UNIT 5 PYQS
(PROGRAMMING IN C)

 void inorder(struct Node* root) {

5.5 UNIT 5 PYQS
(PROGRAMMING IN C)

e if(root |= NULL) {

5.5 UNIT 5 PYQS
(PROGRAMMING IN C)

 inorder(root->left);

5.5 UNIT 5 PYQS
(PROGRAMMING IN C)

« printf("%d ", root->data);

5.5 UNIT 5 PYQS
(PROGRAMMING IN C)

* inorder(root->right);

5.5 UNIT 5 PYQS
(PROGRAMMING IN C)

5.5 UNIT 5 PYQS
(PROGRAMMING IN C)

5.5 UNIT 5 PYQS
(PROGRAMMING IN C)

« Int main() {

5.5 UNIT 5 PYQS
(PROGRAMMING IN C)

e struct Node* root = NULL;

5.5 UNIT 5 PYQS
(PROGRAMMING IN C)

« root = insert(root, 50);

5.5 UNIT 5 PYQS
(PROGRAMMING IN C)

« insert(root, 30);

5.5 UNIT 5 PYQS
(PROGRAMMING IN C)

* insert(root, 70);

5.5 UNIT 5 PYQS
(PROGRAMMING IN C)

« insert(root, 20);

5.5 UNIT 5 PYQS
(PROGRAMMING IN C)

* insert(root, 40);

5.5 UNIT 5 PYQS
(PROGRAMMING IN C)

* insert(root, 60);

5.5 UNIT 5 PYQS
(PROGRAMMING IN C)

* insert(root, 80);

5.5 UNIT 5 PYQS
(PROGRAMMING IN C)

 printf("BST Inorder Traversal: ");

5.5 UNIT 5 PYQS
(PROGRAMMING IN C)

* inorder(root);

5.5 UNIT 5 PYQS
(PROGRAMMING IN C)

e return O;

5.5 UNIT 5 PYQS
(PROGRAMMING IN C)

5.5 UNIT 5 PYQS
(PROGRAMMING IN C)

« Q3. Write a C program to represent a graph using
adjacency matrix.

5.5 UNIT 5 PYQS
(PROGRAMMING IN C)

* #include <stdio.h>

5.5 UNIT 5 PYQS
(PROGRAMMING IN C)

e #define V 4

5.5 UNIT 5 PYQS
(PROGRAMMING IN C)

 void printMatrix(int graph[V][V]) {

5.5 UNIT 5 PYQS
(PROGRAMMING IN C)

e for(int i=0; I<V; i++) {

5.5 UNIT 5 PYQS
(PROGRAMMING IN C)

« for(int j=0; j<V; j++)

5.5 UNIT 5 PYQS
(PROGRAMMING IN C)

« printf("%d ", graphli][jl);

5.5 UNIT 5 PYQS
(PROGRAMMING IN C)

 printf(™\n”);

5.5 UNIT 5 PYQS
(PROGRAMMING IN C)

5.5 UNIT 5 PYQS
(PROGRAMMING IN C)

5.5 UNIT 5 PYQS
(PROGRAMMING IN C)

« Int main() {

5.5 UNIT 5 PYQS
(PROGRAMMING IN C)

« iInt graph[V][V] ={

5.5 UNIT 5 PYQS
(PROGRAMMING IN C)

. {0, 1,1, 0},

5.5 UNIT 5 PYQS
(PROGRAMMING IN C)

. {1,0,1, 1},

5.5 UNIT 5 PYQS
(PROGRAMMING IN C)

. {1,1,0, 1},

5.5 UNIT 5 PYQS
(PROGRAMMING IN C)

. {0, 1,1, 0}

5.5 UNIT 5 PYQS
(PROGRAMMING IN C)

5.5 UNIT 5 PYQS
(PROGRAMMING IN C)

 printf("Adjacency Matrix of Graph:\n");

5.5 UNIT 5 PYQS
(PROGRAMMING IN C)

 printMatrix(graph);

5.5 UNIT 5 PYQS
(PROGRAMMING IN C)

e return O;

5.5 UNIT 5 PYQS
(PROGRAMMING IN C)

5.5 UNIT 5 PYQS
(PROGRAMMING IN C)

« Q4. Write a C program to implement BFS traversal of @
graph.

5.5 UNIT 5 PYQS
(PROGRAMMING IN C)

* #include <stdio.h>

5.5 UNIT 5 PYQS
(PROGRAMMING IN C)

e #defineV 5

5.5 UNIT 5 PYQS
(PROGRAMMING IN C)

* int queue[V], front =-1, rear = -1;

5.5 UNIT 5 PYQS
(PROGRAMMING IN C)

« void enqueue(int val) {

5.5 UNIT 5 PYQS
(PROGRAMMING IN C)

e if(rear == V-1) return;

5.5 UNIT 5 PYQS
(PROGRAMMING IN C)

e if(front ==-1) front = 0;

5.5 UNIT 5 PYQS
(PROGRAMMING IN C)

« queue[++rear] = val;

5.5 UNIT 5 PYQS
(PROGRAMMING IN C)

5.5 UNIT 5 PYQS
(PROGRAMMING IN C)

 iInt dequeue() {

5.5 UNIT 5 PYQS
(PROGRAMMING IN C)

e if(front ==-1 | | front >rear) return -1;

5.5 UNIT 5 PYQS
(PROGRAMMING IN C)

« return queue[front++];

5.5 UNIT 5 PYQS
(PROGRAMMING IN C)

5.5 UNIT 5 PYQS
(PROGRAMMING IN C)

 void BFS(int graph[V][V], int start) {

5.5 UNIT 5 PYQS
(PROGRAMMING IN C)

« int visited[V] = {0};

5.5 UNIT 5 PYQS
(PROGRAMMING IN C)

« enqueue(start);

5.5 UNIT 5 PYQS
(PROGRAMMING IN C)

 visited[start] = 1;

5.5 UNIT 5 PYQS
(PROGRAMMING IN C)

« while(front <=rear) {

5.5 UNIT 5 PYQS
(PROGRAMMING IN C)

 int node = dequeue();

5.5 UNIT 5 PYQS
(PROGRAMMING IN C)

« printf("%d ", node);

5.5 UNIT 5 PYQS
(PROGRAMMING IN C)

e for(int i=0; I<V; i++) {

5.5 UNIT 5 PYQS
(PROGRAMMING IN C)

« if(graph[node][i] == 1 && lvisited]i]) {

5.5 UNIT 5 PYQS
(PROGRAMMING IN C)

« enqueueli);

5.5 UNIT 5 PYQS
(PROGRAMMING IN C)

 visited]i] = 1;

5.5 UNIT 5 PYQS
(PROGRAMMING IN C)

5.5 UNIT 5 PYQS
(PROGRAMMING IN C)

5.5 UNIT 5 PYQS
(PROGRAMMING IN C)

5.5 UNIT 5 PYQS
(PROGRAMMING IN C)

5.5 UNIT 5 PYQS
(PROGRAMMING IN C)

« Int main() {

5.5 UNIT 5 PYQS
(PROGRAMMING IN C)

« iInt graph[V][V] ={

5.5 UNIT 5 PYQS
(PROGRAMMING IN C)

- {0,1,1,0,03},

5.5 UNIT 5 PYQS
(PROGRAMMING IN C)

. {1,0,0,1,1},

5.5 UNIT 5 PYQS
(PROGRAMMING IN C)

 {1,0,0,1,0},

5.5 UNIT 5 PYQS
(PROGRAMMING IN C)

. {0,1,1,0,1},

5.5 UNIT 5 PYQS
(PROGRAMMING IN C)

. {0,1,0,1,0}

5.5 UNIT 5 PYQS
(PROGRAMMING IN C)

5.5 UNIT 5 PYQS
(PROGRAMMING IN C)

 printf("BFS Traversal:");

5.5 UNIT 5 PYQS
(PROGRAMMING IN C)

« BFS(graph, 0);

5.5 UNIT 5 PYQS
(PROGRAMMING IN C)

e return O;

5.5 UNIT 5 PYQS
(PROGRAMMING IN C)

5.5 UNIT 5 PYQS
(PROGRAMMING IN C)

* 100 Data Structures PYQs with Complete C Solutions

5.5 UNIT 5 PYQS
(PROGRAMMING IN C)

« All problems include a brief statement, complete C
solution (or compact outline for very advanced topics),
and time complexity.

Q1. REVERSE AN ARRAY

» Reverse the elements of an array.

Q1. REVERSE AN ARRAY

« #include <stdio.h>

« void reverse(int af], int n){ for(int i=0;i<n/2;i++){ int t=qA[i];
afi]l=a[n-1-i]; a[n-1-1]=t; } }

« Int main(){ int a[]={1,2,3,4,5},n=5; reverse(a,n); for(int
i=0;i<n;i++) printf("%d ",ali]); return 0; }

Q1. REVERSE AN ARRAY

« Time Complexity: O(n)

Q2. FIND MAXIMUM
SRS VSN

* Find max in an array.

Q2. FIND MAXIMUM
SRS VSN

« #include <stdio.h>

« Int main(){ int a[]={10,45,23,78,56},n=5,max=a[0]; for(int
I=1;i<n;i++) if(a[i]>max) max=qali]; printf("%d",max);
return O; }

Q2. FIND MAXIMUM
SRS VSN

« Time Complexity: O(n)

Q3. LINEAR SEARCH

« Search key in unsorted array.

Q3. LINEAR SEARCH

« #include <stdio.h>

 int main(){ int a[]={5,10,15,20},n=4,key=15,found=0;
for(int i=0;i<n;i++) if(a[i]==key){found=1;break;}
printf(found? "Found"."Not Found"); return O; }

Q3. LINEAR SEARCH

« Time Complexity: O(n)

Q4. BINARY SEARCH

« Search key in sorted array.

Q4. BINARY SEARCH

« #include <stdio.h>

 Int bs(int a[].,int n,int key){ int I=0,h=n-1; while(I<=h){ int
m=(l+h)/2; if(a[m]==key) return m; if(a[m]<key) l=m+1;
else h=m-1;} return -1; }

« int main(){ int a[]={10,20,30,40,50}; int idx=bs(a,5,30);
printf("%d",idx); return O; }

Q4. BINARY SEARCH

- Time Complexity: O(log n)

Q5. INSERT ELEMENT

* Insert value at position (1-indexed).

Q5. INSERT ELEMENT

« #include <stdio.h>

« int main(){ int a[10]={1,2,3,4,5},n=5,p0s=3,val=99; for(int
I=n;i>=pos;i--) ali]=ali-1]; a[pos-1]=val;n++; for(int
I=0;i<n;i++) printf("%d ",a[i]); return O; }

Q5. INSERT ELEMENT

« Time Complexity: O(n)

Q6. DELETE ELEMENT

« Delete element at position.

Q6. DELETE ELEMENT

« #include <stdio.h>

« inf main(){ int a[]={1,2,3,4,5},n=5,p0s=2; for(int i=pos-
1;i<n-1;i++) ali]=a[i+1]; n--; for(int i=0;i<n;i++) printf("%d
",ali]); return O; }

Q6. DELETE ELEMENT

« Time Complexity: O(n)

Q7. BUBBLE SORT

« Sort array using Bubble Sort.

Q7. BUBBLE SORT

« #include <stdio.h>

« int main(){ int a[]={5.1,4,2,8},n=5; for(int i=0;i<n-1;i++)
for(int j=0;j<n-i-1;j++) if(a[j]>a[j+1]){int
t=a[jl;a[j]=alj+1];a[j+1]=t;} for(int i=0;i<n;i++) printf("%d
",ali]); return O; }

Q7. BUBBLE SORT

« Time Complexity: O(nA\2)

Q8. SELECTION SORT

« Sort array using Selection Sort.

Q8. SELECTION SORT

* #include <stdio.h>

« int main(){ int a[]={64,25,12,22,11},n=5; for(int i=0;i<n-
1;i++){ int m=i; for(int j=i+1;j<n;j++) if(a[j]<a[m]) m=]; int
t=a[m];a[m]=qali];al[i]=t;} for(int i=0;i<n;i++) printf("%d
",ali]); return O; }

Q8. SELECTION SORT

« Time Complexity: O(nA\2)

Q9. INSERTION SORT

« Sort array using Insertion Sort.

Q9. INSERTION SORT

* #include <stdio.h>

« int main(){int a[]={12,11,13,5,6},n=5; for(int i=1;i<n;i++){
int key=ali],j=i-1; while(j>=0 && al[j]>key){ a[j+1]=alj]; |--;
} afj+1]=key; } for(int i=0;i<n;i++) printf("%d ",a[i]); return
0; }

Q9. INSERTION SORT

« Time Complexity: O(nA\2)

Q10. MERGE SORT

» Divide-and-conquer sort.

Q10. MERGE SORT

* #include <stdio.h>

« void merge(int a[],int Lint m,int r){int n1=m-I+1,n2=r-
mM,I1=0,j=0,k=l; int L[nT1],R[N2]; for(i=0;i<nT1;i++) L[i]=a[l+];
for(j=0;j<n2;j++) R[j]=a[m+1+]]; i=0;j=0; while(i<n1&&j<n2)
alk++]=(L[I]<=R[j]) eL[i++]:R[j++]; while(i<n1)
a[k++]=L[i++]; while(j<n2) a[k++]=R[j++]; }

« void ms(int a[].int Lint r){if(I<r){ int m=(l+r)/2; ms(a,l,m);
ms(a,m+1,r); merge(a,l.m.,r);} }

« int main(){int a[]={12,11,13,5,6,7}; ms(a,0,5); for(int
1=0;i<6;i++) printf("%d ",ali]); return 0; }

Q10. MERGE SORT

* Time Complexity: O(n log n)

Q11. QUICK SORT
(LOMUTO)

* In-place quicksort using Lomuto partition.

Q11. QUICK SORT
(LOMUTO)

* #include <stdio.h>

- int part(int a[l.int Lint r){ int p=ar]i=l; for(int j=l;j<r;j++)
if(a[j]<=p){ int t=ali];ali]=a[j];a[j]=t; i++; } int
t=ali;afi]=alrl;alr]=t; returni; }

« void gs(int a[].int Lint r){ if(I<r){ int pi=part(a.lr); gs(a.l,pi-
1); gs(a.pi+1.,r);}}

« int main(){ int a[]={10,7,8,9,1,5}; gs(a.,0,5); for(int
i=0;i<6;i++) printf("%d ",al[i]); return O; }

Q11. QUICK SORT
(LOMUTO)

« Time Complexity: Average O(n log n), Worst O(nA2)

Q12. HEAP SORT

« Sort using max-heap.

Q12. HEAP SORT

* #include <stdio.h>

« void heapify(int af],int n,int i){ int [=2*1+1,r=2*+2,m=i;
if(I<n&&afl]>a[m]) m=l; if(r<n&&afr]>a[m]) m=r; if(m!=i){
int t=a[i];ali]=a[m];a[m]=t; heapify(a,n,.m);} }

« void hs(int a[],int n){ for(int i=n/2-1;i>=0;i--) heapify(a,n,i);
for(int i=n-1;i>0;i--){ int t=a[0];a[0]=a[i];ali]=t;
heapify(a,i,0);} }

« intmain(){ int a[]={12,11,13,5,6,7},n=6; hs(a,n); for(int
i=0;i<n;i++) printf("%d ",ali]); return O; }

Q12. HEAP SORT

* Time Complexity: O(n log n)

Q13. ROTATE ARRAY BY K

« Rotate array left by k positions (reversal algorithm).

Q13. ROTATE ARRAY BY K

* #include <stdio.h>

« void rev(int af],int Lint r){ while(l<r){ int
t=a[l];a[l]=a[r];alr]=t; ++; -} }

 void rotate(int af],int n,int k){ k%=n; rev(a,0,k-1);
rev(ak,n-1); rev(a,0,n-1); }

« intmain(){ int a[]={1,2,3,4,5,6,7}; rotate(a,7,2); for(int
i=0;i<7;i++) printf("%d ",a[i]); return O; }

Q13. ROTATE ARRAY BY K

« Time Complexity: O(n)

Q14. SECOND LARGEST
SESVISNI

« Find second largest distinct element.

Q14. SECOND LARGEST
SESVISNI

* #include <stdio.h>

« Int main(){ int a[]={12,35,1,10,34,1},n=6,first=-
1e9,second=-1€9; for(int i=0;i<n;i++){ if(a[i]>first){
second=first; first=al[i]; } else if(a[i]!=first && ali]>second)
second=qli]; } printf("%d",second); return O; }

Q14. SECOND LARGEST
SESVISNI

« Time Complexity: O(n)

Q15. KADANE'S MAXIMUM
SUBARRAY SUM

* Find max subarray sum.

Q15. KADANE'S MAXIMUM
SUBARRAY SUM

« #include <stdio.h>

« int main(){ int a[]={-2,-3,4,-1,-2,1,5,-3},n=8,
max=a[0],cur=a[0]; for(int i=1;i<n;i++){ if(cur<0) cur=ali];
else cur+=qli]; if(cur>max) max=cur;} printf("%d",max);
return O; }

Q15. KADANE'S MAXIMUM
SUBARRAY SUM

« Time Complexity: O(n)

Q16. TWO SUM (SORT
— TWO POINT

« Check if two numbers sum to X.

Q16. TWO SUM (SORTED)
~ TWO POINTERS

« #include <stdio.h>

« int main(){ int a[]={1,2,4,4},n=4,x=8,|1=0,r=n-1,0k=0;
while(I<r){ int s=a[l]+a[r]; if(s==x){ok=1;break;} else if(s<x)
I++; else r--; } printf(ok2"Yes"."No"); return 0; }

Q16. TWO SUM (SORT
— TWO POINT

« Time Complexity: O(n)

Q17. MATRIX TRANSPOSE

* Transpose an NxN matrix in-place.

Q17. MATRIX TRANSPOSE

* #include <stdio.h>

« Int main(){ int n=3,a[3][3]={{1,2,3}.{4,5,6}{7.8,9}}; for(int
1=0;i<n;i++) for(int j=i+1;j<n;j++){ Int t=a[i][j]; a[i] j]=a[j][i];
a[jl[i]=t; } for(int i=0;i<n;i++){ for(int j=0;j<n;j++) printf("%d
“alil[j]); printf("\n"); } return 0; }

Q17. MATRIX TRANSPOSE

« Time Complexity: O(nA\2)

Q18. SEARCH IN
ROW/COLUMN SORTED
MATRIX

« Search key in matrix sorted by rows and columns.

Q18. SEARCH IN
ROW/COLUMN SORTED
MATRIX

* #include <stdio.h>

« Int main(){ inf

r=3,c=3,a[3][3]={{1.4,7}.{2,5.8}{3,6,9}} x=5.,i=0,j]=c-1,0k=0;
while(i<r && j>=0){ if(a[i][j]==x){ok=1;break;} else
if(a[i][j]>x) j--; else i++; } printf(ok?"Found":"Not Found");
return O; }

Q18. SEARCH IN
ROW/COLUMN SORTED
MATRIX

« Time Complexity: O(r+c)

Q19. COUNT INVERS
(ME

« Count pairs (i<}, afi]>a[j]).

Q19. COUNT INVERSIONS
(MERGE)

#include <stdio.h>

long long merge(long long a[].int l,int m,int r){ int n1=m-
I+1,n2=r-m; long long L[n1],R[N2]; for(ln’r| 0;i<nl;i++)
L[i]=a[l+i]; fOI’(IﬂTJ 0;]<n2;j++) R[j]=a[m+1+]]; inf
1=0,]=0,k=I; long long inv=0; while(i<n1 && |<n2){

If(L[1]<= R[J]) alk++]=L[i++]; else { a[k++]|=R[++]; inv += (N]
-1); } } while(i<n1) alk++]=L[i++]; while(j<n2)
a[k++]=R[j++]; return inv; }

long long ms(long long a[].int Lint r){ if(I>=r) return O; int
m=(l+r)/2; long long inv=0; inv+=ms(a,l.m);
inv+=ms(a,m+1,r); inv+t=merge(a,l,m,r); return inv; }

int molnS){ long long a[]={2.4,1,3,5}; printf("%lld",
ms(a,0,4)); return O; }

Q19. COUNT INVERS
(ME

* Time Complexity: O(n log n)

Q20. DUTCH NATIONAL
FLAG (0/1/2 SORT)

« Sort array of 0s,1s,2s.

Q20. DUTCH NATIONAL
FLAG (0/1/2 SORT)

* #include <stdio.h>

 int main(){ int a[]={2.0,2,1,1,0},n=6,1=0,m=0,h=n-1;
while(m<=h){ if(a[m]==0){int t=a[l];a[l]=a[m];a[m]=t; [++;
m++;} else if(a[m]==1) m++; else {int
t=a[m];a[m]=a[h];a[h]=t; h--; } } for(int I=0;i<n;i++)
printf("%d ",ali]); return 0; }

Q20. DUTCH NATIONAL
FLAG (0/1/2 SORT)

« Time Complexity: O(n)

Q21. MAJORITY ELEMENT
(BOYER-MOORE)

« Find element > n/2 if exists.

Q21. MAJORITY ELEMENT
(BOYER-MOORE)

* #include <stdio.h>

« Int main(){ int a[]={2,2,1,1,1,2,2},n=7,cand=0,count=0;
for(int i=0;i<n;i++){ if(count==0){cand=al[i];count=1;} else
if(a[i]==cand) count++; else count--; } // verity

 int cnt=0; for(int i=0;i<n;i++) if(a[i]==cand) cnt++;
printf(cnt>n/22"%d"."No", cand); return 0; }

Q21. MAJORITY ELEMENT
(BOYER-MOORE)

« Time Complexity: O(n)

Q22. MERGE TWO
SORTED ARRAYS

« Merge into a single sorted array.

Q22. MERGE TWO
SORTED ARRAYS

« #include <stdio.h>

 int main(){ int a[]={1,3,5},b[]={2,4,6},n=3,m=3,i=0,j=0;
while(i<n && j<m) printf("%d ", (a[i]<=b[j])eali++]:b[j++]);
while(i<n) printf("%d ",a[i++]); while(j<m) printf("%d
" b[j++]); return O; }

Q22. MERGE TWO
SORTED ARRAYS

« Time Complexity: O(n+m)

Q23. EQUILIBRIUM IN

« Find index where left sum == right sum.

Q23. EQUILIBRIUM INDEX

* #include <stdio.h>

« Int main(){ int a[]={-7,1,5,2,-4,3,0},n=7/,total=0,left=0,idx=-
1; for(int i=0;i<n;i++) total+=ali]; for(int i=0;i<n;i++){ total-
=qali]; if(left==total){idx=i;break;} left+=qali]; }
printf("%d",idx); return O; }

Q23. EQUILIBRIUM IN

« Time Complexity: O(n)

Q24. PAIR WIT
SUM (F

« Check if any pair sums to X (unsorted).

Q24. PAIR WI'
SUM (HASHING)

e #include <stdio.nh>
 #define SIZE 101
 int H[SIZE];

« Int main(){ int a[]={8,7,2,5,3,1},n=6,x=10; for(int
I=0;i<n;i++){ int need=x-ali]; if(heed>=0 && H[need]){
printf("Yes"); return O;} H[a[i]]=1;} printf("No"); return O; }

Q24. PAIR WIT
SUM (F

« Time Complexity: O(n) average

Q25. PREFIX SUM RANGE
QUERY

« Compute sum l..r using prefix sums.

Q25. PREFIX SUM RANGE
QUERY

« #include <stdio.h>

« Int main(){ int a[]={1,2,3.4,5},n=5,p[6]={0}; for(int
I=1;i<=n;i++) p[i]=p[i-1]+ali-1]; int |=2,r=4; printf("%d", plr]-
p[l-1]); return O; }

Q25. PREFIX SUM RANGE
QUERY

« Time Complexity: O(n) build, O(1) query

Q26. SINGLY LINKED LIST:
INSERT AT HEAD

* Implement insertion at head.

Q26. SINGLY LINKED LIST:
INSERT AT HEAD

#include <stdio.h>
#include <stdlib.h>

typedef struct Node{ int data; struct Node* next; }
Node;

void push(Node** head,int x){ Node*
n=(Node*)malloc(sizeof(Node)); n->data=x; n-
>next=*head; *head=n; }

void print(Node* h){ while(h){ printf("%d ",h->data); h=h-
>next; }}

int main(){ Node* head=NULL; push(&head,3);
push(&head,2); push(&head,1); print(head); return O; }

Q26. SINGLY LINKED LIST:
INSERT AT HEAD

« Time Complexity: O(1)

Q27. SINGLY
DE

« Delete first occurrence of key.

LINKED LIST:

_ETE BY KEY

Q27. SINGLY
DE

e #include <stdio.nh>
* #include <stdlib.h>

LINKED LIST:

E

EBY KEY

« typedef struct Node{int datq; struct Node* next; }

Node;

« void del(Node** head,int key){ Node*
=*head,*prev=NULL; while(t && t->datal=key){ prev=t;
t=t->next; } if(It) return; if(lprev) *head=t->next; else

prev->next=t->next; free(t); }

Q27. SINGLY
DE

« Time Complexity: O(n)

LINKED LIST:

_ETE BY KEY

Q28. REVERSE A SINGLY
LINKED LIST

e [terative reversal.

Q28. REVERSE A SINGLY
LINKED LIST

e #include <stdio.nh>
* #include <stdlib.h>

« typedef struct Node{int datq; struct Node* next; }
Node;

« Node* rev(Node* h){ Node* p=NULL; while(h){ Node*
n=h->next; h->next=p; p=h; h=n; } refurn p; }

Q28. REVERSE A SINGLY
LINKED LIST

« Time Complexity: O(n)

Q29. DETECT LOOP IN
LINKED LIST (FLOYD)

« Use tortoise and hare.

Q29. DETECT LOOP IN
LINKED LIST (FLOYD)

e #include <stdio.nh>
* #include <stdlib.h>

* typedef struct Node{ int datq; struct Node* next; }
Node;

 int hasLoop(Node* h){ Node *s=h,*f=h; while(f && f-
>next){ s=s->next; f=f->next->next; if(s==f) return 1; }
return O; }

Q29. DETECT LOOP IN
LINKED LIST (FLOYD)

« Time Complexity: O(n)

Q30. INTERSECTION OF
TWO LINKED LISTS

« Find merge point by length difference.

Q30. INTERSECTION OF
TWO LINKED LISTS

#include <stdio.h>
#include <stdlib.h>

typedef struct Node{ int data; struct Node* next; }
Node;

int len(Node* h){int c=0; while(h){c++;h=h->next;} return
C;}

Node* advance(Node* h,int k){ while(k--) h=h->next;
return h; }

Node* intersect(Node* a,Node* b){ int la=len(q),
Ib=len(b); if(la>Ib) a=advance(a,la-Ib); else
b=advance(b, lb-la); while(a&&b){ if(a==b) return q;
a=a->next; b=b->next; } return NULL; }

Q30. INTERSECTION OF
TWO LINKED LISTS

« Time Complexity: O(n+m)

Q31. STACK L
A

* Implement push, pop., peek.

Q31. STACK L
A

e #include <stdio.nh>
 #define MAX 100

* int st{MAX], top=-1;

 void push(int x){ if(fop==MAX-1) return; st[++top]=x; }
« int pop(){ return (top==-1)2-1:st[top--]; }

 int peek(){return (top==-1)2-1:st[top]; }

Q31. STACK L
A

« Time Complexity: O(1)

« Stack ops with list.

Q32. STACK U

RINI=

D L

Q32. STACK L
LINKED L

#include <stdio.h>
#include <stdlib.h>

typedef struct Node{ int data; struct Node* next; }
Node;

void push(Node** 1,int x){ Node*
n=(Node*)malloc(sizeof(Node)); n->data=x; n->next=*t;
*1=n; }

int pop(Node** t){ if(I*t) return -1; Node* tmp=*t; int
v=tmp->datq; *t=tmp->next; free(tmp); return v; }

« Time Complexity: O(1)

Q32. STACK U

RINI=

D L

Q33. BALANCED
PARENTHESES (STACK)

« Check balanced brackets.

Q33. BALANCED
PARENTHESES (STACK)

e #include <stdio.h>
« #define MAX 1000
« char st[MAX]; int top=-1;

« Int match(char a,char b){return
(a=="(88b==))| | (a=="T&80b==") | | ([a=={'88b==}); }

« int isBalanced(char* s){ for(int i=0;s[i];i++){ char c=s[i];
if(c=="("| |c=="T"| | c==Y) st[++top]=c; else { if(top==-
1| | 'match(st[top].c)) return O; top--; } } return top==-1; }

« int main(){ char s[]="{{()]}":
printf(isBalanced(s)2"Yes"."No"); return 0; }

Q33. BALANCED
PARENTHESES (STACK)

« Time Complexity: O(n)

Q34. INFIX TO POSTFIX
(SHUNTING-YARD)

« Convert infix to postfix.

Q34. INFIX TO POSTFIX
(SHUNTING-YARD)

« #include <stdio.h>

« #include <ctype.h>

« #define MAX 1000

« char st[MAX]; int top=-1;

« int prec(char c); if(c=="A') return 3; if(c==""| | c=='/") return 2;
if(c=="+"] | c=="-') return 1, return O; }

* int main(){ charin[]="a+b*(c-d)"; char out[MAX]; int k=0;

for(int i=0; in[i]; i++){ char c=in]i];

if(isalnum(c)) out[k++]=c;

else if(c=='(") st[++top]=c;

else if(c==")"){ while(top!=-1 && st[top]!='(') out[k++]=st[top--]; top--; }

« else {while(top!=-1 && prec(st[top])>=prec(c)) out[k++]=st[top--];
st[++top]=c;} }

while(top!=-1) out[k++]=st[top--]; out[k]="\0"; printf("%s",out); return 0; }

Q34. INFIX TO POSTFIX
(SHUNTING-YARD)

« Time Complexity: O(n)

Q35. EVALUATE POSTFIX

« Evaluate postfix expression with stack.

Q35. EVALUATE POSTFIX

« #include <stdio.h>
« #include <ctype.h>
« #define MAX 1000
 int st[MAX], top=-1;

 int main(){ char p[]="23*54*+9-"; for(int i=0;p[i];i++){ char
c=pli]; if(isdigit(c)) st[++top]=c-'0"; else {int b=st[top--],
a=st[fop-]; int r= (c=="+')2a+b:(c=="-')¢0-
b:(c==")2a*b:a/b; st[++top]=r; } } printf("%d", st[top]);

return O; }

Q35. EVALUATE POSTFIX

« Time Complexity: O(n)

Q36. QUEUE USING
ARRAY (CIRCULAR)

* Implement circular queue.

Q36. QUEUE USING
ARRAY (CIRCULAR)

e #include <stdio.nh>
e #define MAX 5

* int g[MAX], front=0, rear=0, cnt=0;
« void eng(int x){ if(cnt==MAX) return; g[rear]=x;
rear=(rear+1)%MAX; cnt++; }

« int deq(){ if(cnt==0) return -1; int v=q[front];
front=(front+1)%MAX; cnt--; return v; }

Q36. QUEUE USING
ARRAY (CIRCULAR)

« Time Complexity: O(1)

Q37. QU

 Enqueue/Dequeue with list.

EUE U
LINKED L

#include <stdio.h>
#include <stdlib.h>

fypedef struct Node{ int data; struct Node* next; }
Node;

typedef struct{ Node *f,*r; } Q;

void eng(Q* g,inf x){ Node*
n=(Node*)malloc(sizeof(Node)); n->data=x;n-
>next=NULL; if(!g->r) g->f=g->r=n; else {g->r->next=n; g-
>r=n;} }

int deq(Q* g){ if(!g->f) return -1; Node* t=g->f; int v=t-
>datqa; g->f=t->next; if(lg->f) g->r=NULL; free(t); return v;

}

Q37. QU

« Time Complexity: O(1)

Q38. DEQUE (ARRAY)

« Double-ended queue operations.

Q38. DEQUE (ARRAY)

#include <stdio.h>

#define MAX 10

int dg[MAX],f=-1,r=-1;

int isFull(){ return (f==0 && r==MAX-1) | | (f==r+1);}
int isEmpty(){ return f==-1; }

v0|d mser’rFron’r](m’r x){ if(isFull()) return; if(f==-1){ f=r=0; } else
if(f==0) f=MAX-T; else f--; dq[f]=x; }

v0|d insertRear(int x){ |f(|sFuII(re’rurn; if(f==-1){ f=r=0; } else
=MAX-1) r=0; else r++; =X; }

m’r deleteFront(){ if(iSEmpt re’rum -1; int v=dq([f]; if(f==r) f=r=-1;
else if(fF==MAX fo(o elslf)e%mr re’rumv) qlf]: if(f==r)

m’r deleteRear(){ if(isEmpty()) return -1; int v=dq[r]; if(f==r) f=r=-1;
else if(r==0)r—I\(/)\fA\X(l elg)eyr(—)—) return v } alrl: it Al

Q38. DEQUE (ARRAY)

« Time Complexity: O(1)

Q39. PRIORITY QUEUE
(MAX-HEAP)

e Insert and exiract-max.

Q39. PRIORITY QUEUE
(MAX-HEAP)

e #include <stdio.nh>
 #define MAX 100

« int h[MAX],sz=0;

« void insert(int x){ int i=sz++; h[i]=x; while(i>0 && h{(i-
1)/2]<n[i]){ int t=N[i];h[i]=N[(i-1)/2];h[(i-1)/2]=t; i=(i-1)/2; } }

« Int extract(){ int r=h[0]; h[0]=h[--sz]; int i=0; while(1){ int
I=2%1+1,m=2%+2,m=i; if(I<sz&&h[l]>h[m]) m=l;
if(r<sz&&h[rn]>h[m]) m=rn; if(m==i) break; int
t=nh[i];h[i]=h[M];h[M]=t; i=m; } returnr; }

Q39. PRIORITY QUEUE
(MAX-HEAP)

« Time Complexity: Insert/Delete O(log n)

Q40. NEXT GREATER
ELEMENT (STACK)

« Find next greater element for each item.

Q40. NEXT GREATER
ELEMENT (STACK)

« #include <stdio.h>

« #define MAX 100

* int st{MAX],top=-1;

« Int main(){ int a[]={4,5,2,25},n=4,ans[4]; for(int
i=0;i<n;i++){ while(top!=-1 && a[st[top]]<ali]){
ans[st[top]]=qali]; top--; } st[++top]=i; } while(top!=-1){
ans[st[top]]=-1; top--; } for(int i=0;i<n;i++) printf("%d ->
%d\n",ali],ansli]); return 0; }

Q40. NEXT GREATER
ELEMENT (STACK)

« Time Complexity: O(n)

Q41. LRU CACHE (AR
+ COUNTERS, SIM

« Simulate LRU page replacement (simplified).

Q41. LRU CACHE (ARRAY
+ COUNTERS, SIMPLE)

« #include <stdio.h>
 #define F 3
 int frame[F]={-1,-1,-1}, age[F]={0};

e Int main(){ inf
ref[]={7.0,1,2,0,3,0,4,2,3,0,3},n=12,hit=0,miss=0; for(int
t=0;t<n;t++){ int p=ref[t],pos=-1; for(int i=0;i<F;i++){
ageli]++; if(frame[i]==p){pos=i;break;} } if(pos!=-1){
hit++; age[pos]=0; } else { miss++; int repl=0; for(int
i=1;i<F;i++) if(age[i]>age[repl]) repl=i; frame[repl]=p;
agelrepl]=0; } } printf("Hits=%d Miss=%d",hit,miss); return
0;}

Q41. LRU CACHE (AR
+ COUNTERS, SIM

« Time Complexity: O(n*F)

Q42. BINARY SEARCH
TREE: INSERT & INORDER

 Create BST and inorder traverse.

Q42. BINARY SEARCH
TREE: INSERT & INORDER

#include <stdio.h>
#include <stdlib.h>
typedef struct Node{ int key; struct Node *I,*r; } Node;

Node* new(int k){ Node* n=(Node*)malloc (sizeof(Node)); n-
>key=k;n->I=n->r=NULL; return n; }

Node* ins(Node* r,int k){if(Ir) return new(k); if(k<r->key) r-
>|=ins(r->| k); else if(k>r->key) r->r=ins(r->r,k); returnr; }

void inorder(Node* r){ if(Ir) return; inorder(r->1); printf("%d ", r-
>key); inorder(r->r); }

int main(){ Node* r=NULL; int a[]={50,30,20,40,70,60,80}; for(int
1=0;i<7;i++) r=ins(r,a[i]); inorder(r); return O; }

Q42. BINARY SEARCH
TREE: INSERT & INORDER

« Time Complexity: Insert O(h)

Q43. BST SEARCH &
DELETE

 Delete a node in BST.

Q43. BST SEARCH &
DELETE

#include <stdio.h>
#include <stdlib.h>
typedef struct Node{ int key; struct Node *|,*r; } Node;

Node* new(int k){ Node* n=(Node*)malloc (sizeof(Node)); n-
>key=k;n->|=n->r=NULL; return n; }

Node* ms(Node r.int k){ if(Ir) return new(k); if(k<r->key) r-
>|=ins(r->1,k); else if| I<>r— ey) r->r=ins(r->r,k); returnr; }

Node* minNode (Node* r){ while(r->l) r=r->I; returnr; }

Node* del(Node* r,int k){ if(Ir) return r; if(k<r->key) r—>I:deI(r—
>, I<2 else if(k>r->key) r->r=del(r->r.k); else{lf(lr—>l){ Node* t=r-
>r; ree(r) return t;} else if(Ir->r){ Node* t=r->I; free(r); return t;}
N?de T}m|nNode(r—>r) r->key=t->key; r->r= del(r—>r’r >kevy);}
retfurnr;

Q43. BST SEARCH &
DELETE

« Time Complexity: O(h)

Q44. TREE TRAVERSALS
(RECURSIVE)

 Preorder, Inorder, Postorder.

Q44. TREE TRAVERSALS
(RECURSIVE)

* #include <stdio.h>

 typedef struct Node{ int d; struct Node *I,*r; } Node;

« void pre(Node* r){ if(Ir) return; printf("%d ",r->d); pre(r->l);
pre(r->r); }

« void in(Node* r){ if(Ir) return; in(r->1); printf("%d ",r->d);
in(r->r); }

 void post(Node* r){ if(Ir) return; post(r->I); post(r->r);
printf("%d ",r->d); }

Q44. TREE TRAVERSALS
(RECURSIVE)

« Time Complexity: O(n)

Q45. HEIGHT OF BINARY
TREE

« Compute height (levels).

Q45. HEIGHT OF BINARY
TREE

« #include <stdio.h>
* fypedef struct Node{ int d; struct Node *,*r; } Node;

« int h(Node* r){ if(Ir) return -1; int In=h(r->l), rh=h{(r->r);
return (Ih>rhelh:rh)+1; }

Q45. HEIGHT OF BINARY
TREE

« Time Complexity: O(n)

Q46. CHECK BALANCED
BINARY TREE

« Height-balanced check.

Q46. CHECK BALANCED
BINARY TREE

* #include <stdio.h>

* fypedef struct Node{ int d; struct Node *,*r; } Node;

« int bal(Node* r){ if(lr) return O; int Ih=bal(r->1); if(Ih==-1)
return -1; int rh=bal(r->r); if(rh==-1) return -1; if(Ih-
rh>1]| [rh-lh>1) return -1; return (Ih>rhglh:rh)+1; }

Q46. CHECK BALANCED
BINARY TREE

« Time Complexity: O(n)

Q47. LOWEST COMMON
ANCESTOR (BST)

 Find LCA in BST.

Q47. LOWEST COMMON
ANCESTOR (BST)

* #include <stdio.h>

* typedef struct Node{ int k; struct Node *I,*r; } Node;

« Node* Ica(Node* r,int a,int b){ while(r){ if(a<r->k && b<r-
>k) r=r->I; else if(a>r->k && b>r->k) r=r->r; else returnr; }
return NULL; }

Q47. LOWEST COMMON
ANCESTOR (BST)

« Time Complexity: O(h)

Q48. AVL TREE INSERTION

« Self-balancing BST (rotations).

Q48. AVL TREE INSERTION

#include <stdio.h>

#include <stdlib.h>

typedef struct N{ int k,h; struct N *,*r; } N;

int H(N* n){ return nen->h:0; }

int max(int a,int b){ return a>b<a:b; }

N* newN(int k){ N* n=(N*)malloc(sizeof(N)); n->k=k;n->I=n->r=NULL;n->h=1; return n;

N* rrof(N* N* x=y->|; N* T=x->r; x->r=vy; y->I=T; y->h=max(H(y->|),H(y->r))+1; x-
>h=mch(H¥3<g>l),H(xY>r))+1; return x; } vy Y (Aly=>1).Aly->n))

N* [rot(N* x){ N* y=x->r; N* T=y->|; y->|=x; Xx->r=T; x->h=max(H(x->I),H(x->r))+1; y-
>h:m<gx(H()y{—>I),I»-/|(y—>r))+]; rey’rurnK/;} (Rl Hpe>r))+ 1y

int balF(N* n){ return n2H(n->I)-H(n->r):0; }

N*ins(N* n,int k){ if(In) return newN(k); if(k<n->k) n->|=ins(n->1,k); else if(k>n->k) n-
>r=ins(n->r.k); else refurn n; n->h=1+max(H(n->1),H(n->r)); int b=balF(n); if(b>1 &&
k<n->|->k) return rrof(n); if(lb<-1 && k>n->r->k) return Iro’r(ng' if(lb>1 && k>n->|->k){ n-
>ITIro’r(n—}>I); return rrot(n);} if(b<-1 && k<n->r->k){ n->r=rrot(n->r); return Irot(n);}
return n;

Q48. AVL TREE INSERTION

- Time Complexity: O(log n)

Q49. BINARY HEAP (MIN-
HEAP)

e Insert and extract-min.

Q49. BINARY HEAP (MIN-
HEAP)

e #include <stdio.nh>
 #define MAX 100

« int h[MAX],sz=0;

« void up(int i){ while(i>0 && h[(i-1)/2]>h[i]){ int
t=hlil;h[i]=h[(i-1)/21:h[(i-1)/2]=t; i=(i-1)/2: 3)

« void down(int i){ while(1){ int |=2%+1,r=2*+2,m=i;
if(I<sz&&h[l]<h[m]) m=l; if(r<sz&&h[r]<h[m]) m=r; if(m==i)
break; int t=h[i];h[i]=h[mM];h[m]=t; i=m; } }

« void insert(int x){ h[sz]=x; up(sz++); }
« int extract(){ int r=h[0]; h[0]=h[--sz]; down(0); returnr; }

Q49. BINARY HEAP (MIN-
HEAP)

« Time Complexity: Insert/Delete O(log n)

QO50. TRIE INSERT &
SEARCH (LOWERCASE}

 Prefix tree for strings.

QO50. TRIE INSERT &
SEARCH (LOWERCASE}

#include <stdio.h>
#include <stdlib.h>
#define A 26

typedef struct T{ struct T* c[A]; int end; } T;

T* newT(){ T* n=(T*)malloc(sizeof(T)); n->end=0; for(int
i=0;i<A;i++) n->c[i]=NULL; return n; }

void insert(T* r, const char* s){ for(int i=0;s[i];i++){ int idx=s[i]-'a";
if(Ir->c[idx]) r->c[idx]=newT(); r=r->c[idx]; } ->end=1; }

int search(T* r, const char* s){ for(int i=0;s[i];i++){ int idx=s[i]-'a’;
if(Ir->c[idx]) return O; r=r->c[idx]; } return r->end; }

QO50. TRIE INSERT &
SEARCH (LOWERCASE}

« Time Complexity: Insert/Search O(m)

Q51. HUFFMAN CODING
(OUTLINE)

« Build optimal prefix codes using min-heap (outline).

Q51. HUFFMAN CODING
(OUTLINE)

« // Outline: create nodes with freq, build min-heap,
repeatedly extract two min, merge, insert back.

« // Due to length, fullimplementation is omitted here;
see Set 6/74 for notes.

e iInt main(){ return O; }

Q51. HUFFMAN CO
(OUT

« Time Complexity: O(n log n) to build

Q52. GRAPH BFS
(ADJACENCY LIST)

* Breadth-first search from source.

Q52. GRAPH BFS
(ADJACENCY LIST)

#include <stdio.h>

#include <stdlib.h>

#define MAX 100

typedef struct Node{ int v; struct Node* next; } Node;
Node* adj[MAX]; int Vis[MAX];

void addE(int u.int v){ Node* n=(Node*)malloc(sizeof(Node));
n->v=v; n->next=adj[u]; adj[u]=n; }

void bfs(int s){ int g[MAX].f=0,r=0; vis[s]=1; q[r++]=s; while(f<r){
int u=q[f++]; printf("%d ",u); for(Node* p=adj[u];p;p=p->next)
if(lvis[p->V]){ vis[p->V]=1; g[rt+]=p->V; } } }

Q52. GRAPH BFS
(ADJACENCY LIST)

« Time Complexity: O(V+E)

Q53. GRAPH DFS
(RECURSIVE)

« Depth-first traversal.

Q53. GRAPH DFS
(RECURSIVE)

#include <stdio.h>

#include <stdlib.h>

#define MAX 100

typedef struct Node{ int v; struct Node* next; } Node;
Node* adj[MAX]; int vis[]MAX];

void addE(int u,int v){ Node*
n=(Node*)malloc(sizeof(Node)); n->v=v; n-
>next=adj[u]; adj[u]=n; }

void dfs(int u){ vis[u]=1; printf("%d ",u); for(Node*
p=adj[u];p;p=p->next) if(lvis[p->V]) dfs(p->V); }

Q53. GRAPH DFS
(RECURSIVE)

« Time Complexity: O(V+E)

Q54. TOPOLOGICAL
SORT (KAHN)

» Topo order for DAG.

Q54. TOPOLOGICAL
SORT (KAHN)

#include <stdio.h>

#include <stdlib.h>

#define MAX 100

typedef struct Node{ int v; struct Node* next; } Node;
Node* adj[MAX]; int indeg[MAX];

void addE(int u.int v){ Node* n=(Node*)malloc(sizeof(Node));
n->v=v; n->next=adj[u]; adj[u]=n; indeg[Vv]++; }

void topo(int V){ int g[MAX],t=0,r=0, cnt=0; for(int i=0;i<V;i++)
if(indeg|i]==0) g[r++]=i; while(f<r){ int u=q[f++]; printf("%d ",u);
cnt++; for(Node* p=adj[u];p;p=p->next){ if(--indeg[p->Vv]==0)
q[r++]=p->v; } }if(cntl=V) printf("(cycle)"); }

Q54. TOPOLOGICAL
SORT (KAHN)

« Time Complexity: O(V+E)

Q55. DIJKSTRA
(ADJACENCY MATRIX)

« Shortest paths from source with non-negative weights.

Q55. DIJKSTRA
(ADJACENCY MATRIX)

e #include <stdio.h>
e« #defineV 9
e #define INF 1&9

* int mMinDist(inf dist[], int spf[]){ inf m=INF,idx=-1; for(int
v=0,v<V;v++) if(Ispt[v] && dist[v]<=m){ m= dIST[V] idx=v; }
return idx; }

- void dikstra(int g[V][V]. int src){ int dist[V].spt[V]= }
for(int iI=0;i<V;i++) dist[i|=INF; dist[src]=0; for(int c=
1;c++){ int u=minDist(dist,spt); spt[u]=1; for(int
v=0;v<V;v++) if(Ispt[v] && g[u] [V] &&
dls’r[u]+g[u][v]<d|s’r[v]) dist[v]=dist[u]+g[u][V]; } for(int
1=0;I<V;i++) printf("%d ",dist][i]); }

Q55. DIJKSTRA
(ADJACENCY MATRIX)

« Time Complexity: O(VA2)

Q56. KRUSKAL'S MST
(UNION-FIND)

« Minimum spanning tree.

Q56. KRUSKAL'S MST
(UNION-FIND)

#include <stdio.h>
#include <stdlib.h>
stfruct Edge{int u,v,w; };

m’r comp(cons’r void* a,const void* b){ return ((struct Edge*)a)-
- ((struct Edge*)b)->w; }

m’r parent[100],rnk[100];
int find(int x){ return parent[x]==xe¢x:(parent[x]=find(parent[x])); }

void unite(int g,int b){ a=find(q); b= fmd[(]) if(al=b){
if rnk{[o]<m|< b] parent[a]=b; else if(rnk[b]<rnk[a]) parent[b]=q;

else { parent[b]=a; rnk[a]++; }}}

m’r mdlr\w}){ s’rruc’r Ed e e[% {éO 1,10},{0,2, 6}{ {0,3,5}.{1,3,15},{2,3,4}};
forfint i=0;i<V;i++) {pgren [IT=Lrk]] O}

qsor’r e,E, mzeof(s’rruc’r Edge),comp]; for(inf i=0, cnt=0; I<E &&

cnt<Vv-i; |++){ if(find(e[i]. u)l find e |] v) unite(e[il.u.e[i].v);

w+=eli]l.w; cnt++; } } printf("MST= ; return O;

Q56. KRUSKAL'S MST
(UNION-FIND)

* Time Complexity: O(E log E)

Q57. PRIM'S MST
(ADJACENCY MATRIX)

« Minimum spanning tree using Prim.

Q57. PRIM'S MST
(ADJACENCY MATRIX)

e #include <stdio.h>
« #define V 5
 #define INF 1e9

« int minKey(int key[], int mst[]){ int m=INF,idx=-1; for(int
v=0;v<V;v++) if(Imst[v] && key[v]<m){ m=key][v]; idx=v; }
return idx; }

« void prim(int g[V][V]){ int key[V] mst[V]={0},parent[V]; for(int
I=0;i<V;i++){ key[i]=INF; parent[i]=-1; } key[0]=0; for(int
c=0;c<V-1;c++){ int u=minKey(key,mst); mst[u]=1; for(int
v=0;v<V;v++) if(g[u][V] && Imst[v] && g[u][v]<key[V])}{
parent[v]=u; key[v]=g[u][V]; } } int sum=0; for(int i=1;i<V;i++)
sum+=g[i][parent]i]]; printf("MST=%d",sum); }

Q57. PRIM'S MST
(ADJACENCY MATRIX)

« Time Complexity: O(VA2)

Q58. DETECT CYCLE IN
UNDIRECTED GRAPH (DSU)

« Cycle detection using Union-Find.

Q58. DETECT CYCLE IN
UNDIRECTED GRAPH (DSU)

* #include <stdio.h>

« struct Edge{intu,v; };
« int parent[100];

e Int find(int x){ refurn
parent[x]==x2x:(parent[x]=find(parent[x])); }

* int unite(int a,int b){ a=find(a); b=find(b); if(a==b) refurn
1; parent[b]=a; return 0; }

 int main(){ struct Edge e[]={{0,1}.{1,2}.,{2,0}}; int V=3,E=3;
for(int i=0;i<V;i++) parent]i]=i; for(int i=0;i<E;i++)
if(unite(eli].u.eli].v)) { printf("Cycle"); return 0;} printf("N
Cycle"); return O; }

Q58. DETECT CYCLE IN
UNDIRECTED GRAPH (DSU)

« Time Complexity: O(E a(V))

Q59. TOPOLOGICAL
SORT (DFS)

« Topo order using DFS stack.

Q59. TOPOLOGICAL
SORT (DFS)

#include <stdio.h>

#include <stdlib.h>

#define MAX 100

typedef struct Node{ int v; struct Node* next; } Node;
Node* adj[MAX]; int vis[MAX], st[MAX], top=-1;

void addE(int u,int v){ Node*
n=(Node*)malloc(sizeof(Node)); n->v=v; n-
>next=adj[u]; adj[u]=n; }

void dfs(int u){ vis[u]=1; for(Node* p=adj[u];p;p=p-
>next) if(lvis[p->v]) dfs(p->v); st[++top]=u; }

Q59. TOPOLOGICAL
SORT (DFS)

« Time Complexity: O(V+E)

Q0. GRAPH CONNECTED
COMPONENTS (DFS)

« Count components.

Q0. GRAPH CONNECTED
COMPONENTS (DFS)

#include <stdio.h>

#include <stdlib.h>

#define MAX 100

typedef struct Node{ int v; struct Node* next; } Node;
Node* adj[MAX]; int Vis[MAX];

void addE(int u,int v){ Node* n=(Node*)malloc(sizeof(Node));
n->v=v; n->next=adj[u]; adj[u]=n; }

void dfs(int u)# vis[u]=1; for(Node* p=ad|[u];p;p=p->next)
if(lvis[p->v]) dis(p->v); }

int main(){ int V=5,comp=0; addE(0,1); addE(1,0); addE(2,3);
addE(3,2); for(int i=0;i<V;i++) if(lvis[i]){ comp++; dfs(i);}
printf("%d",comp); return 0; }

Q0. GRAPH CONNECTED
COMPONENTS (DFS)

« Time Complexity: O(V+E)

Q61. SHORTEST PATH IN
UNWEIGHTED GRAPH (BFS)

« Compute distances.

Q61. SHORTEST PATH IN
UNWEIGHTED GRAPH (BFS)

e #include <stdio.h>
* #include <stdlib.h>
 #define MAX 100

» typedef struct Node{ int v; struct Node* next; } Node;

« Node* adj[MAX]; int dist[MAX];

« void addE(int u,int v){ Node* n=(Node*)malloc (sizeof(Node));
n->v=v; n->next=adj[u]; adj[u]=n; }

« void sp(int s,int V){ int g[MAX],t=0,r=0,vis[]MAX]={0}; for(int
i=0;i<V;i++) dist[i]=-1; vis[s]=1; dist[s]=0; g[r++]=s; while(f<r){ int
u=q[f++]; for(Node* p=adj[u];p;p=p->next) if(lvis[p->V]){ Vis[p-
>v]=1; dist[p->Vv]=dist[u]+1; q[r++]=p->V; } } }

Q61. SHORTEST PATH IN
UNWEIGHTED GRAPH (BFS)

« Time Complexity: O(V+E)

Q62. HASHING WITH
LINEAR PROBING

« Open addressing hash table.

Q62. HASHING WITH
LINEAR PROBING

* #include <stdio.h>
« #define S 10

 int H[S];
« void insert(int k){ int i=k%S; while(H[i]!=0) i=(i+1)%S; H[i]=k;
}

 Int search(int k){ int i=k%S,s=i; while(H[i]!=k){ if(H[I]==0)
return -1; i=(i+1)%S; if(i==s) return -1;} return i; }

« int main(){ insert(12); insert(22); insert(32); printf("%d",
search(22)); return O; }

Q62. HASHING WITH
LINEAR PROBING

 Time Complexity: Avg O(1)

Q63. HASHING WITH
QUADRATIC PROBING

» Resolve collisions quadratically.

Q63. HASHING WITH
QUADRATIC PROBING

e #include <stdio.nh>
« #define S 10
 int H[S];

« void insert(int k){ int i=k%S,c=0; while(H[(i+c*c)%S]!=0)
c++; H[(i+c*c)%S]=k; }

Q63. HASHING WITH
QUADRATIC PROBING

 Time Complexity: Avg O(1)

Q6é4. SEPARATE
CHAINING HASHING

 Buckets as linked lists.

Q6é4. SEPARATE
CHAINING HASHING

« #include <stdio.h>

« #include <stdlib.h>

« #define S 10

 typedef struct Node{ int d; struct Node* next; } Node;
« Node* HT[S];

 int h(int k){ return k%S; }

 void insert(int k){ int i=h(k); Node*
n=(Node*)malloc(sizeof(Node)); n->d=k; n->next=HT]i];
HT[i]=n; }

Qé4. SEPARATE
CHAINING HASHING

 Time Complexity: Avg O(1)

Q65. COUNTING SORT

« Stable counting sort for small range.

Q65. COUNTING SORT

* #include <stdio.h>

« void cs(int a[],int n,int m){ intf c[m+1]; for(int
1=0;i<=m;i++) c]i]=0; for(int i=0;i<n;i++) c[aA[i]]++; for(int
i=1;i<=m;i++) c[i]+=c][i-1]; int out[n]; for(int i=n-1;i>=0;i--)
out[--c[ali]]]=ali]; for(int i=0;i<n;i++) a[i]=out[i]; }

Q65. COUNTING SORT

« Time Complexity: O(n+k)

Q66. RA

 Digits by counting sort.

DIX SORT (LS

Q66. RADIX SORT (LSD)

* #include <stdio.h>

- int getMax(int a[].int n){int m=a[0]; for(int i=1;i<n;i++)
if(afi]>m) m=ali]; return m; }

« void cexp(int af],int n,int €){ int out[n], c[10]={0}; for(int
i=0;i<n;i++) c[(a[i]/e)%10]++; for(int i=1;i<10;i++)
c[i]+=c][i-1]; for(int i=n-1;i>=0;i--){ int d=(a[i]/e)%10; out[--
c[d]]=ali]; } for(int i=0;i<n;i++) a[i]=out]i]; }

 void radix(int af],int n){ iInt m=getMax(a,n); for(int
e=1;m/e>0;e*=10) cexp(a,n,e); }

Q66. RA

* Time Complexity: O(nk)

DIX SORT (LS

Q67. BLOOM FILTER (TOY)

» Probabilistic set membership.

Q67. BLOOM FILTER (TOY)

« #include <stdio.h>

« #define S 50

« int B[S];

 int h1(char*s){int h=0; while(*s) h=(h+*s++)%S; return h; }
. ;n’r h2(char*s){ int h=1; while(*s) h=(h*(*s++))%S; return h;
« void insert(char*s){ B[n1(s)]=B[h2(s)]=1;}

 int query(char*s){ return B[h1(s)]&&B[h2(s)]; }

Q67. BLOOM FILTER (TOY)

« Time Complexity: Insert/Query O(k)

Q68. DISJOINT
(UNION-F

« Path compression + union by rank.

Q68. DISJOINT
(UNION-F

« #include <stdio.h>

« int p[100], r[100];

« void make(int n){ for(int i=0;i<n;i++){p[i]=i;r[i]=0;} }
« int find(int x){ return p[x]==x2x:(p[x]=find(p[x])); }

 void uni(int a,int b){ a=find(a); b=find(b); if(a==b) return;
if(rja]<r[b]) p[a]=b; else if(r[b]<r[a]) p[b]=a; else {
p[b]=a; rla]++;}}

Q68. DISJOINT
(UNION-F

« Time Complexity: a(n)

Q69. FLOYD-WARSHALL

 All-pairs shortest paths.

Q69. FLOYD-WARSHALL

« #include <stdio.h>

« #define INF 99999

« #define V 4

« void fw(int g[V][V]){ int A[V][V]; for(int i=0;i<V;i++) for(int
=0<Vii++) dlilil=alil bl

o for(int k=0;k<V;k++) for(int i=0;i<V;i++) for(int j=0;j<V;j++)
it(d[i] [k]+d[k][]<d[i][j]) dlilb]=d[i]k]+d[k][];

e for(int i=0;i<V;i++){ for(int j|=0;j<V;j++)
printf(d[i] [j]==INF¢"INF ":"%d ", d[i][]]); printf("\n"); } }

Q69. FLOYD-WARSHALL

* Time Complexity: O(VA3)

Q70. BELLMAN-FOR

 Single-source shortest path with negatives.

Q70. BELLMAN-FOR

#include <stdio.h>
#include <limits.n>
struct E{int u,v,.w;};

void bf(struct E e[].inf V.int E,int s){ int d[V]: for(int
1=0;i<V;i++) d[i]=INT_MAX; d[s]=0;

for(int i=1;i<=V-1;i++) for(int]=0;j<E;j++)

|f(d[e[J] u]I INT_MAX && d[e[j].u]+e[j].w<d[e]j].v])
dle[j].v]=d[e[j].u]+e[j].w;

fOI’(IﬂTJ_OJ<EJ++) if(d[e[j].u]!'=INT_MAX &&
dle[j].u]+e[j].w<d[e[j].v]){ printf('"Neg cycle"); return; }

for(int iI=0;i<V;i++) printf("%d ",d[i]); }

Q70. BELLMAN-FOR

« Time Complexity: O(VE])

Q7 1. FORD-FULKERSON
(EDMONDS-KARP BFS)

« Max flow in network.

Q7 1. FORD-FULKERSON
(EDMONDS-KARP BFS)

* #include <stdio.h>

« #include <string.h>

 #include <limits.h>
o #define V 6

 int bfs(int r[V]{V] m’rsm’r’rm’rp[]){m’rq[]OO]f 0,rn=0,vis[V]={0};
g[rn++]=s; Vis[s]=1; p[s]=-1

. Wh|le(f<r£ {intu=
if(lvis[v]&&r[u][v]>

vis[t]:'}

5 +]; for(]m’r v=0;v<V;v++)
. |n’r maxflow(int g []
n

f+
{g[r++]=v; p[v]=U; Vis[v]=1; } } return

]] ,ints, IHTT{IHT r[V][V]; for(int i=0;i<V;i++)

for(int j= OJ<VJ++ alilfil; int p[V].flow=0;

R

flow+=pf; } return flow;

Q7 1. FORD-FULKERSON
(EDMONDS-KARP BFS)

« Time Complexity: O(VEA2) for EK

Q72. FIBONACCI (

« Bottom-up DP for nth Fibonacci.

Q72. FIBONACCI (DP)

* #include <stdio.h>

« Int main(){ int n=10, f[n+2]; f[0]=0; f[1]=1; for(int
1=2;i<=n;i++) f[i]=f[i-1]+f[i-2]; printf("%d",f[Nn]); return O; }

Q72. FIBONACCI |

« Time Complexity: O(n)

Q73. LONGEST COMMON
SUBSEQUENCE (DP)

« Length of LCS.

Q73. LONGEST COMMON
SUBSEQUENCE (DP)

* #include <stdio.h>

« #include <string.h>

« int main(){ char X[]="AGGTAB", Y[]="GXTXAYB"; int
m=strlen(X),n=strlen(Y), L[m+1][n+1];

o for(int i=0;i<=m;i++) for(int j=0;j<=n;j++) if(i==0 | j==0)
L[i][j]=0; else if(X[i-1]==Y[j-1]) L[i][j]=L[I-1][j-1]+1; else
LOTOI=(L0-T] 0= L 0] O-1]) e L= 1] 1L O] [-11;

« printf("%d",L[m][n]); return O; }

Q73. LONGEST COMMON
SUBSEQUENCE (DP)

« Time Complexity: O(mn)

Q74. LONGEST INCREASING
SUBSEQUENCE (O(N LOG
N))

« Patience sorfing method.

Q74. LONGEST INCREASING
SUBSEQUENCE (O(N LOG
N))

* #include <stdio.h>

 Int cellidx(int af],int t[],int Lint r,int key){ while(r-I>1){ int
m=I+(r-)/2; if(a[t[m]]>=key) r=m; else |=m; } returnr; }

« Int LIS(int a[].int n){ int tail[n],idx[n],len=1; tail[0]=0;
iIdx[0]=a[0];

 for(int i=1;i<n;i++){ if(a[i]<idx[0]) idx[0]=ql[i]; else
if(afi]>idx[len-1]) idx[len++]=qal[i]; else idx[ceilidx(idx,tail,-
1,len-1,a[i])]=ali]; } return len; }

« int main(){ int a[]={10,22,9,33,21,50,41,60}; printf("%d",
LIS(a,8)); return O; }

Q74. LONGEST INCREASING
SUBSEQUENCE (O(N LOG
N))

« Time Complexity: O(n log n)

Q75.0/1 KNAPSACK (

 Max value within capacity.

Q75.0/1 KNAPSACK (DP)

* #include <stdio.h>

 int max(int a,int b){return a>b<2a:b;}

« iInt main(){ int v[]={60,100,120}, w[]={10,20,30}, n=3,
W=50; int K[n+1][W+1];

o for(int i=0;i<=n;i++) for(int wi=0; wt<=W; wit++)
if(i==0| | wt==0) K[i][wt]=0; else if(w][i-1]<=wt)

K[i] [wi]=max(V[i-1]+K[i-1][wt-w]i-1]], K[I-1][wt]); else
K[I][wt]=K[i-1][wt];

« printf("%d" K[n][W]); return O; }

Q75.0/1 KNAPSACK (

« Time Complexity: O(nW)

Q76. MATRIX CHA
MULTIPLICATION (D

* Minimum multiplication cost.

Q76. MATRIX CHA
MULTIPLICATION (D

e #include <stdio.nh>
o #define INF 1e9

 int min(int a,int b){return a<b<?a:b;}

« Int main(){ int p[]={1,2,3,4}, n=4; int m[n][n]; for(int
I=1;i<n;i++) m{[i][i]=0;

« for(int L=2; L<n; L++) for(int i=1;i<n-L+1;i++){ int j=i+L-1;
M[i] [J]=INF; for(int k=i;k<j;k++) m[i][j]=min(m[i] []].

m[i] [k]+m{k+1][j]+p[i-1]*p[k]*p[]); }

« printf("%d", m[1][n-1]); return O; }

Q76. MATRIX CHA
MULTIPLICATION (D

« Time Complexity: O(nA3)

Q77. ACTIVITY SELECTION
(GREEDY)

« Max non-overlapping activities.

Q77. ACTIVITY SELECTION
(GREEDY)

#include <stdio.h>
#include <stdlib.h>
struct Act{ints.f; };

int cmp(const void*a,const void*b){ return ((struct
Act*)a)->f - ((struct Act*)b)->f; }

INt main(){ struct Act
al]={{1,2}.{3.4}.{0,6}.,{5,7}.{8,9}.{5.9}}; int n=6;
gsort(a,n,sizeof(struct Act),cmp); int cnt=1,last=0; for(int
i=1;i<n;i++) if(a[i].s>=a[last].f){ cnt++; last=i; }
printf("%d",cnt); return O; }

Q77. ACTIVITY SELECTION
(GREEDY)

« Time Complexity: O(n log n)

Q/8. JOB SEQUENCING
WITH DEADLINES (GREEDY)

* Maximize profit.

Q/8. JOB SEQUENCING
WITH DEADLINES (GREEDY)

e #include <stdio.h>
* #include <stdlib.h>

« struct Job{intid,dead,profit; };

» int cmp(const void*a,const void*b){ return ((struct Job*)b)-
>profit - ((struct Job*)a)->profit; }

* int main(){ struct Job
i[1={{1,2,100},{2,1,19},{3,2,27}.{44,1,25},{5.3,15}}; int
n=>5,slot[10]={0},res=0;

« gsort(j,n,sizeof(struct Job),cmp);

 for(int i=0;i<n;i++) for(int t=j[i].dead; t>0; t--) if(Islof[t]){ slot[t]=T;
res+=j[i].profit; break; }

« printf("%d" res); return 0; }

Q/8. JOB SEQUENCING
WITH DEADLINES (GREEDY)

« Time Complexity: O(nA\2)

Q79. FRACTIONAL
KNAPSACK (GREEDY)

« Max value with fractions.

Q79. FRACTIONAL
KNAPSACK (GREEDY)

e #include <stdio.nh>
* #include <stdlib.h>

* struct Item{int w; double v; };

« Int cmp(const void*a,const void*b){ double r=((struct
ltem*)b)->v/((struct ltem*)b)->w - ((struct Item*)a)-
>v/((struct Item*)a)->w; return (r>0)-(r<0); }

 int main(){ struct Item it[]={{10,60},{20,100},{30,120}}; int
n=3,W=050; gsort(it,n,sizeof(struct ltem),cmp); double
val=0; for(int i=0;i<n && W>0;i++){ if (it[i]].w<=W){ W-
=it[i].w; val+=iti].v; } else { val+=it[i].v *
((double)W/it[i].w); W=0; } } printf("%.2f",val); return 0; }

Q79. FRACTIONAL
KNAPSACK (GREEDY)

* Time Complexity: O(n log n)

Q80. EDIT DISTANCE
(LEVENSHTEIN)

* Min edits to convert string A to B.

Q80. EDIT DISTANCE
(LEVENSHTEIN)

« #include <stdio.h>
« #include <string.h>

« Int MIN3(int a,int b,int c){ int m=a<b<2a:b; return
m<ce¢m:c; }

* inf moin(z{ char a[]="kitten", b[]="sitting"; int
m=strlen(a),n=strlen(b), D[M+1][n+1];

o for(int i=0;i<=m;i++) DJi][0]=i; for(int j=0;j<=n;j++) D[O][j]=j;

« for(int i=1i<=m;i++) for(int j[=1;j<=n;j++) D[i][j]= (ali-
H)#W-H)’?’ Dli-1]0-1] : 1+min3(D[i-1]1[].Di] [-1].DI-1][-

« printf("%d",D[m][n]); return O; }

Q80. EDIT DISTANCE
(LEVENSHTEIN)

« Time Complexity: O(mn)

Q81. TRIE DELETE (WORD
DELETION|

« Delete word from trie (mark end=0 if leaf).

Q81. TRIE DELETE (WORD
DELETION|

« // Outline: recursively delete child; if child becomes
empty and not end, free it; otherwise stop.

« // Full code omitted for brevity.

e iInt main(){ return O; }

Q81. TRIE DELETE (WORD
DELETION|

* Time Complexity: O(m)

Q82. GRAPH COLORING
(BACKTRACKING)

« Color graph with m colors.

Q82. GRAPH COLORING
(BACKTRACKING)

« // Outline: try colors 1..m for each vertex, backtrack on
conflict.

 int main(){ return O; }

Q82. GRAPH COLORING
(BACKTRACKING)

« Time Complexity: Exponential

Q83. N-QUEENS
(BACKTRACKING)

* Place N gueens on NxN board.

Q83. N-QUEENS
(BACKTRACKING)

e #include <stdio.nh>
« #define N 8

« int col[N], d1[2*N], d2[2*N], sol=0:

 void solve(int r){ if(r==N){ sol++; return; } for(int
c=0;c<N;c++) if(lcol[c] && Id1[r-c+N] && !d2[r+c]){
col[c]=d1[r-c+N]=d2[r+c]=1; solve(r+1); col[c]=d1]r-
c+N]=d2[r+c]=0; } }

* int main(){ solve(0); printf("%d",sol); return O; }

Q83. N-QUEENS
(BACKTRACKING)

« Time Complexity: O(N!)

Q84. SUDOKU SOLVER
(BACKTRACKING, 9X9)

 Solve Sudoku using backtracking.

Q84. SU

DOKL

SOLVER

(BACKTRACKING, 9X9)

« // Outline due to length: choose empty cell, fry 1..9,
check row/col/subgrid, recurse; backtrack on failure.

 int main(){ return O; }

Q84. SU

DOKL

SOLVER

(BACKTRACKING, 9X9)

« Time Complexity: Exponential

Q85. OPTIMAL BST (

* Min expected search cost.

Q85. OPTIMAL BST (DP)

« // Outline: DP over ranges with frequency arrays;
m{[i][j]=min over roots (MIi][r-1]+m[r+1][j]+sumFreq).

 int main(){ return O; }

Q85. OPTIMAL BST (

« Time Complexity: O(nA3)

Q86. AVL DELET
(OUTL

 Delete and rebalance.

Q86. AVL DELETION
(OUTLINE)

« // Outline: BST delete then fix heights and rotate based
on balance factor.

 int main(){ return O; }

Q86. AVL DELET
(OUTL

- Time Complexity: O(log n)

Q87. B-TREE INSERT
(OUTL

« Split child on overflow.

Q87. B-TREE INSERTION
(OUTLINE)

« // Outline: search leaf; if full, split (t-1 keys left/right),
promote middle key to parent; may cascade splifs.

 int main(){ return O; }

Q87. B-TREE INSERT
(OUTL

- Time Complexity: O(log n)

Q88. CUCKOO HASHING
(CONCEPT)

 Two tables, two hash functions.

Q88. CUCKOO HASHING
(CONCEPT)

« // Outline: place key in tablel; if occupied, kick out
resident to its alternate position; detect cycles ->
rehash.

 int main(){ return O; }

Q88. CUCKOO HASHING
(CONCEPT)

« Time Complexity: Amortized O(1)

Q8. JOHNSON'S
ALGORITHM (OUTLINE)

« All-pairs shortest paths in sparse graphs.

Q89. JOHNSON'S
ALGORITHM (OUTLINE)

« // Outline: add super-source, Bellman-Ford to compute
h(v); reweight edges w'(u,v)=w(u,v)+h(u)-h(v); run
Dijkstra from each vertex.

 int main(){ return O; }

Q8. JOHNSON'S
ALGORITHM (OUTLINE)

« Time Complexity: O(VE + VA2 log V)

Q90. SHORTEST PAT
DAG (D

« Topo order + relax.

Q90. SHORTEST PA’
DAG (D

e #include <stdio.nh>
o #define INF 1e9

« // Outline: compute topo order; initialize dist[src]=0;
relax edges in topo order.

 int main(){ return O; }

Q90. SHORTEST PAT
DAG (D

« Time Complexity: O(V+E)

Q91. ARTICULATION
POINTS (TARJAN)

* Find cut vertices.

Q91. ARTICULATION
POINTS (TARJAN|

« // Outline: DFS fimestamps, low-link values; a root with
>=2 children or u where low|[v] >= disc[u] is AP.

 int main(){ return O; }

Q91. ARTICULATION
POINTS (TARJAN)

« Time Complexity: O(V+E)

Q92. BRIDGES IN GRAPH
(TARJAN|

 Find critical edges.

Q92. BRIDGES IN GRAPH
(TARJAN|

« // Outline: DFS with discovery/low arrays; edge (u,v) is
bridge if low][v] > disc[u].

 int main(){ return O; }

Q92. BRIDGES IN GRAPH
(TARJAN|

« Time Complexity: O(V+E)

Q93. KMP ST
MATC

« Pattern search using lps[] array.

Q93. KMP STRING
MATCHING

* #include <stdio.h>

« #include <string.h>

« void Ipsb(char* p,int m,int lps[]){ int len=0; lps[0]=0; for(int
i=1;i<m;){ if(p[i]==p[len]) Ips[i++]=++len; else if(len) len=Ips[len-1];
else lps[i++]=0; } }

« void kmp(char* t,char* p){ int n=strlen(t),m=strlen(p), lps[m];
lpsb(p,m,lps); for(int i:O,j=O;i<n;)E if(’r[i]::p[j])é I++; j++; if(j==m){
}p;in’rf("Found at %d\n", I4); j=Ips[j-1]; } } else it(j) j=lps[j-1]; else i++;

« int main(){ char t[]="abxabcabcaby", p[]="abcaby"; kmp(t.p);
return 0; }

Q93. KMP ST
MATC

« Time Complexity: O(n+m)

Q94. RABIN-KARP STR
MATCH

« Rolling hash matching.

Q94. RABIN-KARP STRING
MATCHING

#include <stdio.h>
#include <string.h>
#define d 256
#define g 101

v0|d rkSchor t,char* p){ int n=strlen(t), m=strien(p); int h=1; for(int i=0;i<m-1;i++)
h=(h*d)%q; int ph=0, th=0;

for(int i=0;i<m;i++){ ph=(d*ph + p[i])%q; th=(d*th + 1[i])%Qq; }
for(int i=0si<=n-m;i++){ if(=th){ m’rJ =0; while(j<m && t[i+|]== (9]) JF+ i %
E)rln’rf Found at %d\n", |JO} if(i<n-m){th=(d*(th - t[i]*h) + t[i+m]) f’rh) ‘rh+ =q; }

int main(){ char t[]="GEEKS FOR GEEKS", p[]="GEEK"; rk(t,p); return O; }

Q94. RABIN-KARP STR
MATCH

« Time Complexity: Average O(n+m)

Q95. TRIE AUTO-
COMPLETE (PREFIX
LISTING)

« DFS all words with given prefix.

Q95. TRIE AUTO-
COMPLETE (PREFIX
LISTING)

 // Outline: navigate to prefix node, then DFS collecting
words.

 int main(){ return O; }

Q5. TRIE AUTO-
COMPLETE (PREFIX
LISTING)

. Time Complexity: O(k + output)

Q96. SEGMENT TREE
(RANGE SUM QUERY)

» Build and query sums.

Q96. SEGMENT TREE
(RANGE SUM QUERY)

#include <stdio.h>
int st[400005], a[100005];

int build(int p,int ,int r){ ifSI==r) return st[p]=all]; int m=(l+r)/2;
return st[p]=build(p*2,I.m)+build(p*2+1,m+1,r); }

int query(int p.int Lint r,int i,int j){ if(i>r]| | j<I) return O; if(i<=1&&r<=j)
return st[p]; int m=(I+r)/2; return
query(p*2,I,m,i,j)tquery(p*2+1,m+1,r,ij); }

void update(int p,int Lint r,int idx,int val){ if(I==r){ st[p]=val; return;
}int m=(l+r)/2; if(idx<=m) update(p*2,|,m,idx,val); else
update(p*2+1,m+1 r,idx,val); st[p]=st[p*2]+st[p*2+1]; }

Q96. SEGMENT TREE
(RANGE SUM QUERY)

« Time Complexity: Build O(n), Query/Update O(log n)

Q97. FENWICK TREE (BIT)
FOR PREFIX SUM

« Point update, prefix query.

Q97. FENWICK TREE (BIT)
FOR PREFIX SUM

* #include <stdio.h>
« #define N 100005

 int bIf[N+1];
 void add(int i,inf v){ for(; i<=N; i+=i&-i) bit[i]+=V; }
« int sum(int i){ int s=0; for(; i>0; I-=1&-i) s+=bit[i]; refurn s; }

Q97. FENWICK TREE (BIT)
FOR PREFIX SUM

- Time Complexity: O(log n)

Q8. BINARY SEARCH ON
ANSWER

« Min capacity to ship within D days (pattern).

Q8. BINARY SEARCH ON
ANSWER

« // Outline: binary search on feasible answer; check()
greedily verifies feasibility.

 int main(){ return O; }

Q8. BINARY SEARCH ON
ANSWER

« Time Complexity: O(n log R)

Q99. TWO STACKS IN
ONE ARRAY

« Opftimize space.

Q99. TWO STACKS IN
ONE ARRAY

e #include <stdio.nh>
 #define MAX 100

« int a[MAX], t1=-1, 12=MAX;

« void pushl(int x){ if(t1+1==t2) return; a[++t1]=x; }
« void push2(int x){ if(t1+1==t2) return; a[--12]=x; }
« int popl(){ return t1==-12-1.a[t1--]; }

« int pop2(){ return 12==MAX<e-1:a[t2++]; }

Q99. TWO STACKS IN
ONE ARRAY

« Time Complexity: O(1)

Q100. CIRCULAR LINKE
LIST: JOSEPHL

* Find survivor position.

Q100. CIRCULAR LINKE
LIST: JOSEPHL

* #include <stdio.h>

* int josephus(int n,int k){ int r=0; for(int i=1;i<=n;i++)
r=(r+k)%i; return r+1; }

« int main(){ printf("%d", josephus(7,3)); return 0; }

Q100. CIRCULAR LINKE
LIST: JOSEPHL

« Time Complexity: O(n)

Q101. LRU CACHE
(LINKED LIST + HASH MAP
OUTLINE)

« Typical design question.

QI10T. L
(LINKED LIST +

RU CACHE

HASH MAP
OUTLINE)

« // Outline: doubly linked list for recency, hashmap for

O(1) lookup; move node to head on
on capacity.

 int main(){ return O; }

access; evict tail

Q101. LRU CACHE
(LINKED LIST + HASH MAP
OUTLINE)

» Time Complexity: O(1) ops

Q102. BINARY SEARCH
TREE TO DLL (INORDER)

« Convert BST to sorted doubly linked list.

Q102. BINARY SEARCH
TREE TO DLL (INORDER)

« // Outline: inorder traverse, link prev and current nodes
to form DLL.

 int main(){ return O; }

Q102. BINARY SEARCH
TREE TO DLL (INORDER)

« Time Complexity: O(n)

